lightning/pytorch_lightning/core/saving.py

423 lines
16 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ast
import csv
import inspect
import logging
import os
from argparse import Namespace
from copy import deepcopy
from typing import Any, Callable, Dict, IO, MutableMapping, Optional, Union
from warnings import warn
import torch
import yaml
from pytorch_lightning.utilities import _OMEGACONF_AVAILABLE, AttributeDict, rank_zero_warn
from pytorch_lightning.utilities.apply_func import apply_to_collection
from pytorch_lightning.utilities.cloud_io import get_filesystem
from pytorch_lightning.utilities.cloud_io import load as pl_load
from pytorch_lightning.utilities.parsing import parse_class_init_keys
log = logging.getLogger(__name__)
PRIMITIVE_TYPES = (bool, int, float, str)
ALLOWED_CONFIG_TYPES = (AttributeDict, MutableMapping, Namespace)
if _OMEGACONF_AVAILABLE:
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from omegaconf.errors import UnsupportedValueType, ValidationError
# the older shall be on the top
CHECKPOINT_PAST_HPARAMS_KEYS = ("hparams", "module_arguments") # used in 0.7.6
class ModelIO:
CHECKPOINT_HYPER_PARAMS_KEY = "hyper_parameters"
CHECKPOINT_HYPER_PARAMS_NAME = "hparams_name"
CHECKPOINT_HYPER_PARAMS_TYPE = "hparams_type"
@classmethod
def load_from_checkpoint(
cls,
checkpoint_path: Union[str, IO],
map_location: Optional[Union[Dict[str, str], str, torch.device, int, Callable]] = None,
hparams_file: Optional[str] = None,
strict: bool = True,
**kwargs,
):
r"""
Primary way of loading a model from a checkpoint. When Lightning saves a checkpoint
it stores the arguments passed to `__init__` in the checkpoint under `hyper_parameters`
Any arguments specified through \*args and \*\*kwargs will override args stored in `hyper_parameters`.
Args:
checkpoint_path: Path to checkpoint. This can also be a URL, or file-like object
map_location:
If your checkpoint saved a GPU model and you now load on CPUs
or a different number of GPUs, use this to map to the new setup.
The behaviour is the same as in :func:`torch.load`.
hparams_file: Optional path to a .yaml file with hierarchical structure
as in this example::
drop_prob: 0.2
dataloader:
batch_size: 32
You most likely won't need this since Lightning will always save the hyperparameters
to the checkpoint.
However, if your checkpoint weights don't have the hyperparameters saved,
use this method to pass in a .yaml file with the hparams you'd like to use.
These will be converted into a :class:`~dict` and passed into your
:class:`LightningModule` for use.
If your model's `hparams` argument is :class:`~argparse.Namespace`
and .yaml file has hierarchical structure, you need to refactor your model to treat
`hparams` as :class:`~dict`.
strict: Whether to strictly enforce that the keys in :attr:`checkpoint_path` match the keys
returned by this module's state dict. Default: `True`.
kwargs: Any extra keyword args needed to init the model. Can also be used to override saved
hyperparameter values.
Return:
:class:`LightningModule` with loaded weights and hyperparameters (if available).
Example::
# load weights without mapping ...
MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt')
# or load weights mapping all weights from GPU 1 to GPU 0 ...
map_location = {'cuda:1':'cuda:0'}
MyLightningModule.load_from_checkpoint(
'path/to/checkpoint.ckpt',
map_location=map_location
)
# or load weights and hyperparameters from separate files.
MyLightningModule.load_from_checkpoint(
'path/to/checkpoint.ckpt',
hparams_file='/path/to/hparams_file.yaml'
)
# override some of the params with new values
MyLightningModule.load_from_checkpoint(
PATH,
num_layers=128,
pretrained_ckpt_path: NEW_PATH,
)
# predict
pretrained_model.eval()
pretrained_model.freeze()
y_hat = pretrained_model(x)
"""
if map_location is not None:
checkpoint = pl_load(checkpoint_path, map_location=map_location)
else:
checkpoint = pl_load(checkpoint_path, map_location=lambda storage, loc: storage)
if hparams_file is not None:
extension = hparams_file.split(".")[-1]
if extension.lower() == "csv":
hparams = load_hparams_from_tags_csv(hparams_file)
elif extension.lower() in ("yml", "yaml"):
hparams = load_hparams_from_yaml(hparams_file)
else:
raise ValueError(".csv, .yml or .yaml is required for `hparams_file`")
hparams["on_gpu"] = False
# overwrite hparams by the given file
checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY] = hparams
# for past checkpoint need to add the new key
if cls.CHECKPOINT_HYPER_PARAMS_KEY not in checkpoint:
checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY] = {}
# override the hparams with values that were passed in
checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY].update(kwargs)
model = cls._load_model_state(checkpoint, strict=strict, **kwargs)
return model
@classmethod
def _load_model_state(cls, checkpoint: Dict[str, Any], strict: bool = True, **cls_kwargs_new):
cls_spec = inspect.getfullargspec(cls.__init__)
cls_init_args_name = inspect.signature(cls.__init__).parameters.keys()
self_var, args_var, kwargs_var = parse_class_init_keys(cls)
drop_names = [n for n in (self_var, args_var, kwargs_var) if n]
cls_init_args_name = list(filter(lambda n: n not in drop_names, cls_init_args_name))
cls_kwargs_loaded = {}
# pass in the values we saved automatically
if cls.CHECKPOINT_HYPER_PARAMS_KEY in checkpoint:
# 1. (backward compatibility) Try to restore model hparams from checkpoint using old/past keys
for _old_hparam_key in CHECKPOINT_PAST_HPARAMS_KEYS:
cls_kwargs_loaded.update(checkpoint.get(_old_hparam_key, {}))
# 2. Try to restore model hparams from checkpoint using the new key
_new_hparam_key = cls.CHECKPOINT_HYPER_PARAMS_KEY
cls_kwargs_loaded.update(checkpoint.get(_new_hparam_key))
# 3. Ensure that `cls_kwargs_old` has the right type, back compatibility between dict and Namespace
cls_kwargs_loaded = _convert_loaded_hparams(
cls_kwargs_loaded, checkpoint.get(cls.CHECKPOINT_HYPER_PARAMS_TYPE)
)
# 4. Update cls_kwargs_new with cls_kwargs_old, such that new has higher priority
args_name = checkpoint.get(cls.CHECKPOINT_HYPER_PARAMS_NAME)
if args_name and args_name in cls_init_args_name:
cls_kwargs_loaded = {args_name: cls_kwargs_loaded}
_cls_kwargs = {}
_cls_kwargs.update(cls_kwargs_loaded)
_cls_kwargs.update(cls_kwargs_new)
if not cls_spec.varkw:
# filter kwargs according to class init unless it allows any argument via kwargs
_cls_kwargs = {k: v for k, v in _cls_kwargs.items() if k in cls_init_args_name}
model = cls(**_cls_kwargs)
# give model a chance to load something
model.on_load_checkpoint(checkpoint)
# load the state_dict on the model automatically
keys = model.load_state_dict(checkpoint["state_dict"], strict=strict)
if not strict:
if keys.missing_keys:
rank_zero_warn(
f"Found keys that are in the model state dict but not in the checkpoint: {keys.missing_keys}"
)
if keys.unexpected_keys:
rank_zero_warn(
f"Found keys that are not in the model state dict but in the checkpoint: {keys.unexpected_keys}"
)
return model
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
"""
Do something with the checkpoint.
Gives model a chance to load something before ``state_dict`` is restored.
Args:
checkpoint: A dictionary with variables from the checkpoint.
"""
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
"""
Give the model a chance to add something to the checkpoint.
``state_dict`` is already there.
Args:
checkpoint: A dictionary in which you can save variables to save in a checkpoint.
Contents need to be pickleable.
"""
# -------------------------
# OPTIONAL HOOKS
# -------------------------
def on_hpc_save(self, checkpoint: Dict[str, Any]) -> None:
"""
Hook to do whatever you need right before Slurm manager saves the model.
Args:
checkpoint: A dictionary in which you can save variables to save in a checkpoint.
Contents need to be pickleable.
"""
def on_hpc_load(self, checkpoint: Dict[str, Any]) -> None:
"""
Hook to do whatever you need right before Slurm manager loads the model.
Args:
checkpoint: A dictionary with variables from the checkpoint.
"""
def _convert_loaded_hparams(model_args: dict, hparams_type: Optional[Union[Callable, str]] = None) -> object:
"""Convert hparams according given type in callable or string (past) format."""
# if not hparams type define
if not hparams_type:
return model_args
# if past checkpoint loaded, convert str to callable
if isinstance(hparams_type, str):
hparams_type = AttributeDict
# convert hparams
return hparams_type(model_args)
def update_hparams(hparams: dict, updates: dict) -> None:
"""
Overrides hparams with new values
>>> hparams = {'c': 4}
>>> update_hparams(hparams, {'a': {'b': 2}, 'c': 1})
>>> hparams['a']['b'], hparams['c']
(2, 1)
>>> update_hparams(hparams, {'a': {'b': 4}, 'c': 7})
>>> hparams['a']['b'], hparams['c']
(4, 7)
Args:
hparams: the original params and also target object
updates: new params to be used as update
"""
for k, v in updates.items():
# if missing, add the key
if k not in hparams:
hparams[k] = v
continue
# recurse if dictionary
if isinstance(v, dict):
update_hparams(hparams[k], updates[k])
else:
# update the value
hparams.update({k: v})
def load_hparams_from_tags_csv(tags_csv: str) -> Dict[str, Any]:
"""Load hparams from a file.
>>> hparams = Namespace(batch_size=32, learning_rate=0.001, data_root='./any/path/here')
>>> path_csv = os.path.join('.', 'testing-hparams.csv')
>>> save_hparams_to_tags_csv(path_csv, hparams)
>>> hparams_new = load_hparams_from_tags_csv(path_csv)
>>> vars(hparams) == hparams_new
True
>>> os.remove(path_csv)
"""
fs = get_filesystem(tags_csv)
if not fs.exists(tags_csv):
rank_zero_warn(f"Missing Tags: {tags_csv}.", RuntimeWarning)
return {}
with fs.open(tags_csv, "r", newline="") as fp:
csv_reader = csv.reader(fp, delimiter=",")
tags = {row[0]: convert(row[1]) for row in list(csv_reader)[1:]}
return tags
def save_hparams_to_tags_csv(tags_csv: str, hparams: Union[dict, Namespace]) -> None:
fs = get_filesystem(tags_csv)
if not fs.isdir(os.path.dirname(tags_csv)):
raise RuntimeError(f"Missing folder: {os.path.dirname(tags_csv)}.")
if isinstance(hparams, Namespace):
hparams = vars(hparams)
with fs.open(tags_csv, "w", newline="") as fp:
fieldnames = ["key", "value"]
writer = csv.DictWriter(fp, fieldnames=fieldnames)
writer.writerow({"key": "key", "value": "value"})
for k, v in hparams.items():
writer.writerow({"key": k, "value": v})
def load_hparams_from_yaml(config_yaml: str, use_omegaconf: bool = True) -> Dict[str, Any]:
"""Load hparams from a file.
Args:
config_yaml: Path to config yaml file
use_omegaconf: If both `OMEGACONF_AVAILABLE` and `use_omegaconf` are True,
the hparams will be converted to `DictConfig` if possible
>>> hparams = Namespace(batch_size=32, learning_rate=0.001, data_root='./any/path/here')
>>> path_yaml = './testing-hparams.yaml'
>>> save_hparams_to_yaml(path_yaml, hparams)
>>> hparams_new = load_hparams_from_yaml(path_yaml)
>>> vars(hparams) == hparams_new
True
>>> os.remove(path_yaml)
"""
fs = get_filesystem(config_yaml)
if not fs.exists(config_yaml):
rank_zero_warn(f"Missing Tags: {config_yaml}.", RuntimeWarning)
return {}
with fs.open(config_yaml, "r") as fp:
hparams = yaml.load(fp, Loader=yaml.UnsafeLoader)
if _OMEGACONF_AVAILABLE:
if use_omegaconf:
try:
return OmegaConf.create(hparams)
except (UnsupportedValueType, ValidationError):
pass
return hparams
def save_hparams_to_yaml(config_yaml, hparams: Union[dict, Namespace]) -> None:
"""
Args:
config_yaml: path to new YAML file
hparams: parameters to be saved
"""
fs = get_filesystem(config_yaml)
if not fs.isdir(os.path.dirname(config_yaml)):
raise RuntimeError(f"Missing folder: {os.path.dirname(config_yaml)}.")
# convert Namespace or AD to dict
if isinstance(hparams, Namespace):
hparams = vars(hparams)
elif isinstance(hparams, AttributeDict):
hparams = dict(hparams)
# saving with OmegaConf objects
if _OMEGACONF_AVAILABLE:
# deepcopy: hparams from user shouldn't be resolved
hparams = deepcopy(hparams)
hparams = apply_to_collection(hparams, DictConfig, OmegaConf.to_container, resolve=True)
with fs.open(config_yaml, "w", encoding="utf-8") as fp:
try:
OmegaConf.save(hparams, fp)
return
except (UnsupportedValueType, ValidationError):
pass
if not isinstance(hparams, dict):
raise TypeError("hparams must be dictionary")
hparams_allowed = {}
# drop paramaters which contain some strange datatypes as fsspec
for k, v in hparams.items():
try:
yaml.dump(v)
except TypeError:
warn(f"Skipping '{k}' parameter because it is not possible to safely dump to YAML.")
hparams[k] = type(v).__name__
else:
hparams_allowed[k] = v
# saving the standard way
with fs.open(config_yaml, "w", newline="") as fp:
yaml.dump(hparams_allowed, fp)
def convert(val: str) -> Union[int, float, bool, str]:
try:
return ast.literal_eval(val)
except (ValueError, SyntaxError) as err:
log.debug(err)
return val