lightning/tests
Jirka Borovec a0f7831278
fix miss-leading imports in tests (#5873)
* fix imorts

* .
2021-02-09 05:10:52 -05:00
..
accelerators Refactor simplify tests (#5861) 2021-02-08 11:52:02 +01:00
base fix miss-leading imports in tests (#5873) 2021-02-09 05:10:52 -05:00
callbacks fix miss-leading imports in tests (#5873) 2021-02-09 05:10:52 -05:00
checkpointing fix miss-leading imports in tests (#5873) 2021-02-09 05:10:52 -05:00
core fix miss-leading imports in tests (#5873) 2021-02-09 05:10:52 -05:00
deprecated_api fix miss-leading imports in tests (#5873) 2021-02-09 05:10:52 -05:00
helpers fix miss-leading imports in tests (#5873) 2021-02-09 05:10:52 -05:00
loggers fix miss-leading imports in tests (#5873) 2021-02-09 05:10:52 -05:00
metrics Refactor simplify tests (#5861) 2021-02-08 11:52:02 +01:00
models fix miss-leading imports in tests (#5873) 2021-02-09 05:10:52 -05:00
overrides fix miss-leading imports in tests (#5873) 2021-02-09 05:10:52 -05:00
plugins Refactor simplify tests (#5861) 2021-02-08 11:52:02 +01:00
trainer fix miss-leading imports in tests (#5873) 2021-02-09 05:10:52 -05:00
tuner formatting tests1/n (#5843) 2021-02-06 08:22:10 -05:00
utilities Refactor simplify tests (#5861) 2021-02-08 11:52:02 +01:00
README.md
__init__.py tests for legacy checkpoints (#5223) 2021-01-26 14:27:56 +01:00
collect_env_details.py
conftest.py formatting flake8 & isort (#5824) 2021-02-05 18:33:12 -05:00
mnode_tests.txt Mnodes (#5020) 2021-02-04 20:55:40 +01:00
special_tests.sh [Feat-BugFix] Resolve custom DataLoader (#5745) 2021-02-05 09:03:18 +00:00
test_profiler.py formatting flake8 & isort (#5824) 2021-02-05 18:33:12 -05:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

Install Open MPI or another MPI implementation. Learn how to install Open MPI on this page.

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install AMP support
bash requirements/install_AMP.sh

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.
  3. Horovod with NCCL support: HOROVOD_GPU_OPERATIONS=NCCL pip install horovod

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.4 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.4 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-torch1.4 bash
docker image rm pytorch_lightning:devel-torch1.4