lightning/pytorch_lightning/metrics/regression/psnr.py

108 lines
3.9 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from typing import Any, Optional
from pytorch_lightning.metrics.metric import Metric
from pytorch_lightning.metrics.functional.psnr import (
_psnr_update,
_psnr_compute,
)
class PSNR(Metric):
"""
Computes peak signal-to-noise ratio
Args:
data_range: the range of the data. If None, it is determined from the data (max - min)
base: a base of a logarithm to use (default: 10)
reduction: a method to reduce metric score over labels.
- ``'elementwise_mean'``: takes the mean (default)
- ``'sum'``: takes the sum
- ``'none'``: no reduction will be applied
compute_on_step:
Forward only calls ``update()`` and return None if this is set to False. default: True
dist_sync_on_step:
Synchronize metric state across processes at each ``forward()``
before returning the value at the step. default: False
process_group:
Specify the process group on which synchronization is called. default: None (which selects the entire world)
Example:
>>> from pytorch_lightning.metrics import PSNR
>>> psnr = PSNR()
>>> preds = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
>>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
>>> psnr(preds, target)
tensor(2.5527)
"""
def __init__(
self,
data_range: Optional[float] = None,
base: float = 10.0,
reduction: str = 'elementwise_mean',
compute_on_step: bool = True,
dist_sync_on_step: bool = False,
process_group: Optional[Any] = None,
):
super().__init__(
compute_on_step=compute_on_step,
dist_sync_on_step=dist_sync_on_step,
process_group=process_group,
)
self.add_state("sum_squared_error", default=torch.tensor(0.0), dist_reduce_fx="sum")
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
if data_range is None:
self.data_range = None
self.add_state("min_target", default=torch.tensor(0.0), dist_reduce_fx=torch.min)
self.add_state("max_target", default=torch.tensor(0.0), dist_reduce_fx=torch.max)
else:
self.register_buffer("data_range", torch.tensor(float(data_range)))
self.base = base
self.reduction = reduction
def update(self, preds: torch.Tensor, target: torch.Tensor):
"""
Update state with predictions and targets.
Args:
preds: Predictions from model
target: Ground truth values
"""
if self.data_range is None:
# keep track of min and max target values
self.min_target = min(target.min(), self.min_target)
self.max_target = max(target.max(), self.max_target)
sum_squared_error, n_obs = _psnr_update(preds, target)
self.sum_squared_error += sum_squared_error
self.total += n_obs
def compute(self):
"""
Compute peak signal-to-noise ratio over state.
"""
if self.data_range is not None:
data_range = self.data_range
else:
data_range = self.max_target - self.min_target
return _psnr_compute(self.sum_squared_error, self.total, data_range, self.base, self.reduction)