lightning/pytorch_lightning/trainer/properties.py

669 lines
22 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
from abc import ABC
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import cast, List, Optional, Type, TypeVar, Union
import torch
from torch.optim import Optimizer
import pytorch_lightning as pl
from pytorch_lightning.accelerators import Accelerator
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint, ProgressBarBase
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.callbacks.prediction_writer import BasePredictionWriter
from pytorch_lightning.core.optimizer import LightningOptimizer
from pytorch_lightning.loggers import LightningLoggerBase
from pytorch_lightning.loggers.base import LoggerCollection
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
from pytorch_lightning.loops import PredictionLoop
from pytorch_lightning.loops.dataloader.evaluation_loop import EvaluationLoop
from pytorch_lightning.loops.fit_loop import FitLoop
from pytorch_lightning.plugins import ParallelPlugin, PrecisionPlugin, TrainingTypePlugin
from pytorch_lightning.trainer.connectors.accelerator_connector import AcceleratorConnector
from pytorch_lightning.trainer.connectors.checkpoint_connector import CheckpointConnector
from pytorch_lightning.trainer.connectors.logger_connector import LoggerConnector
from pytorch_lightning.trainer.connectors.logger_connector.result import ResultCollection
from pytorch_lightning.trainer.states import RunningStage, TrainerFn, TrainerState, TrainerStatus
from pytorch_lightning.utilities import DeviceType, DistributedType, rank_zero_deprecation, rank_zero_warn
from pytorch_lightning.utilities.argparse import (
add_argparse_args,
from_argparse_args,
parse_argparser,
parse_env_variables,
)
from pytorch_lightning.utilities.cloud_io import get_filesystem
from pytorch_lightning.utilities.model_helpers import is_overridden
class TrainerProperties(ABC):
_default_root_dir: str
_fit_loop: FitLoop
_lightning_optimizers = None
_predict_loop: PredictionLoop
_progress_bar_callback: ProgressBarBase
_test_loop: EvaluationLoop
_validate_loop: EvaluationLoop
_weights_save_path: str
accelerator_connector: AcceleratorConnector
callbacks: List[Callback]
checkpoint_connector: CheckpointConnector
reload_dataloaders_every_n_epochs: int
limit_val_batches: int
logger: LightningLoggerBase
logger_connector: LoggerConnector
state: TrainerState
# .validate() and .test() set this when they load a checkpoint
validated_ckpt_path: Optional[str] = None
tested_ckpt_path: Optional[str] = None
predicted_ckpt_path: Optional[str] = None
"""
Accelerator properties
"""
@property
def accelerator(self) -> Accelerator:
return self.accelerator_connector.accelerator
@property
def distributed_backend(self) -> Optional[str]:
# for backward compatibility
return self.accelerator_connector.distributed_backend
@property
def training_type_plugin(self) -> TrainingTypePlugin:
return self.accelerator.training_type_plugin
@property
def precision_plugin(self) -> PrecisionPlugin:
return self.accelerator.precision_plugin
@property
def global_rank(self) -> int:
return self.accelerator.training_type_plugin.global_rank
@property
def local_rank(self) -> int:
# some training types define a local rank
return getattr(self.accelerator.training_type_plugin, "local_rank", 0)
@property
def node_rank(self) -> int:
# some training types define a local rank
return getattr(self.accelerator.training_type_plugin, "node_rank", 0)
@property
def world_size(self) -> int:
# some training types define a world size
return getattr(self.accelerator.training_type_plugin, "world_size", 1)
@property
def should_rank_save_checkpoint(self) -> bool:
return self.accelerator.training_type_plugin.should_rank_save_checkpoint
@property
def _distrib_type(self) -> DistributedType:
return self.accelerator_connector._distrib_type
@property
def _device_type(self) -> DeviceType:
return self.accelerator_connector._device_type
@property
def num_nodes(self) -> int:
return self.accelerator_connector.num_nodes
@property
def num_processes(self) -> int:
return self.accelerator_connector.num_processes
@property
def root_gpu(self) -> Optional[int]:
return self.accelerator_connector.root_gpu
@property
def tpu_cores(self) -> int:
return self.accelerator_connector.tpu_cores
@property
def ipus(self) -> int:
return self.accelerator_connector.num_ipus
@property
def num_gpus(self) -> int:
return self.accelerator_connector.num_gpus
@property
def devices(self) -> Optional[Union[List[int], str, int]]:
return self.accelerator_connector.devices
@property
def data_parallel_device_ids(self) -> Optional[List[int]]:
return self.accelerator_connector.parallel_device_ids
@property
def lightning_module(self) -> "pl.LightningModule":
return self.accelerator.lightning_module
@property
def optimizers(self) -> Optional[List[Optimizer]]:
return self.accelerator.optimizers
@optimizers.setter
def optimizers(self, new_optims: Optional[List[Optimizer]]) -> None:
# Necessary to rewrap optimizers to lightning
# They will be re-created when accessing
# the `lightning_optimizers` trainer property
self._lightning_optimizers = None
self.accelerator.optimizers = new_optims
@property
def lr_schedulers(self) -> Optional[list]:
return self.accelerator.lr_schedulers
@lr_schedulers.setter
def lr_schedulers(self, new_schedulers: Optional[list]) -> None:
self.accelerator.lr_schedulers = new_schedulers
@property
def optimizer_frequencies(self) -> list:
return self.accelerator.optimizer_frequencies
@optimizer_frequencies.setter
def optimizer_frequencies(self, new_freqs: list) -> None:
self.accelerator.optimizer_frequencies = new_freqs
@property
def amp_backend(self) -> Optional[str]:
return self.accelerator.amp_backend
@property
def precision(self) -> Union[str, int]:
return self.accelerator.precision
@property
def scaler(self):
return self.accelerator.scaler
@property
def gpus(self) -> Optional[Union[List[int], str, int]]:
return self.accelerator_connector.gpus
@property
def model(self) -> torch.nn.Module:
"""
The LightningModule, but possibly wrapped into DataParallel or DistributedDataParallel.
To access the pure LightningModule, use
:meth:`~pytorch_lightning.trainer.trainer.Trainer.lightning_module` instead.
"""
return self.accelerator.model
@model.setter
def model(self, model: torch.nn.Module) -> None:
"""
Setter for the model, pass-through to accelerator and plugin where the model reference is stored.
Used by the Tuner to reset the state of Trainer and Accelerator.
Args:
model: The LightningModule, possibly wrapped into DataParallel or DistributedDataParallel, depending
on the backend.
"""
self.accelerator.model = model
"""
General properties
"""
@property
def log_dir(self) -> Optional[str]:
if self.logger is None:
dirpath = self.default_root_dir
elif isinstance(self.logger, TensorBoardLogger):
dirpath = self.logger.log_dir
elif isinstance(self.logger, LoggerCollection):
dirpath = self.default_root_dir
else:
dirpath = self.logger.save_dir
dirpath = self.accelerator.broadcast(dirpath)
return dirpath
@property
def use_amp(self) -> bool:
return self.precision == 16
@property
def is_global_zero(self) -> bool:
return self.global_rank == 0
@property
def slurm_job_id(self) -> Optional[int]:
job_id = os.environ.get("SLURM_JOB_ID")
if job_id:
try:
job_id = int(job_id)
except ValueError:
job_id = None
# in interactive mode, don't make logs use the same job id
in_slurm_interactive_mode = os.environ.get("SLURM_JOB_NAME") == "bash"
if in_slurm_interactive_mode:
job_id = None
return job_id
@property
def lightning_optimizers(self) -> List[LightningOptimizer]:
if self._lightning_optimizers is None:
self.convert_to_lightning_optimizers()
return self._lightning_optimizers
@property
def distributed_sampler_kwargs(self) -> Optional[dict]:
if isinstance(self.training_type_plugin, ParallelPlugin):
return self.training_type_plugin.distributed_sampler_kwargs
@property
def data_parallel(self) -> bool:
return self._distrib_type in (
DistributedType.DP,
DistributedType.DDP,
DistributedType.DDP_SPAWN,
DistributedType.DDP2,
)
@property
def progress_bar_callback(self) -> Optional[ProgressBarBase]:
return self._progress_bar_callback
@property
def progress_bar_dict(self) -> dict:
"""Read-only for progress bar metrics."""
ref_model = self.lightning_module
ref_model = cast(pl.LightningModule, ref_model)
standard_metrics = ref_model.get_progress_bar_dict()
pbar_metrics = self.progress_bar_metrics
duplicates = list(standard_metrics.keys() & pbar_metrics.keys())
if duplicates:
rank_zero_warn(
f"The progress bar already tracks a metric with the name(s) '{', '.join(duplicates)}' and"
f" `self.log('{duplicates[0]}', ..., prog_bar=True)` will overwrite this value. "
" If this is undesired, change the name or override `get_progress_bar_dict()`"
" in `LightingModule`.",
UserWarning,
)
return {**standard_metrics, **pbar_metrics}
@property
def _should_reload_dl_epoch(self) -> bool:
"""Check if dataloader should be reloaded in the current epoch."""
n_epochs = self.reload_dataloaders_every_n_epochs
return n_epochs and (not self.current_epoch % n_epochs)
@property
def disable_validation(self) -> bool:
"""Check if validation is disabled during training."""
rank_zero_deprecation(
"`trainer.disable_validation` is deprecated in v1.4 and will be removed in v1.6."
" Use `not trainer.enable_validation` instead."
)
return not self.enable_validation
@property
def enable_validation(self) -> bool:
"""Check if we should run validation during training."""
model_ref = self.lightning_module
val_loop_enabled = is_overridden("validation_step", model_ref) and self.limit_val_batches > 0
return val_loop_enabled
@property
def default_root_dir(self) -> str:
"""
The default location to save artifacts of loggers, checkpoints etc.
It is used as a fallback if logger or checkpoint callback do not define specific save paths.
"""
if get_filesystem(self._default_root_dir).protocol == "file":
return os.path.normpath(self._default_root_dir)
return self._default_root_dir
@property
def weights_save_path(self) -> str:
"""
The default root location to save weights (checkpoints), e.g., when the
:class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` does not define a file path.
"""
if get_filesystem(self._weights_save_path).protocol == "file":
return os.path.normpath(self._weights_save_path)
return self._weights_save_path
@property
def early_stopping_callback(self) -> Optional[EarlyStopping]:
"""
The first :class:`~pytorch_lightning.callbacks.early_stopping.EarlyStopping`
callback in the Trainer.callbacks list, or ``None`` if it doesn't exist.
"""
callbacks = self.early_stopping_callbacks
return callbacks[0] if len(callbacks) > 0 else None
@property
def early_stopping_callbacks(self) -> List[EarlyStopping]:
"""
A list of all instances of :class:`~pytorch_lightning.callbacks.early_stopping.EarlyStopping`
found in the Trainer.callbacks list.
"""
return [c for c in self.callbacks if isinstance(c, EarlyStopping)]
@property
def prediction_writer_callbacks(self) -> List[BasePredictionWriter]:
"""
A list of all instances of :class:`~pytorch_lightning.callbacks.prediction_writer.BasePredictionWriter`
found in the Trainer.callbacks list.
"""
return [cb for cb in self.callbacks if isinstance(cb, BasePredictionWriter)]
@property
def checkpoint_callback(self) -> Optional[ModelCheckpoint]:
"""
The first :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint`
callback in the Trainer.callbacks list, or ``None`` if it doesn't exist.
"""
callbacks = self.checkpoint_callbacks
return callbacks[0] if len(callbacks) > 0 else None
@property
def checkpoint_callbacks(self) -> List[ModelCheckpoint]:
"""
A list of all instances of :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint`
found in the Trainer.callbacks list.
"""
return [c for c in self.callbacks if isinstance(c, ModelCheckpoint)]
@property
def resume_from_checkpoint(self) -> Optional[Union[str, Path]]:
return self.checkpoint_connector.resume_checkpoint_path
def save_checkpoint(self, filepath, weights_only: bool = False) -> None:
self.checkpoint_connector.save_checkpoint(filepath, weights_only)
"""
Parsing properties
"""
@classmethod
def default_attributes(cls) -> dict:
init_signature = inspect.signature(cls)
return {k: v.default for k, v in init_signature.parameters.items()}
@classmethod
def get_deprecated_arg_names(cls) -> List:
"""Returns a list with deprecated Trainer arguments."""
depr_arg_names = []
for name, val in cls.__dict__.items():
if name.startswith("DEPRECATED") and isinstance(val, (tuple, list)):
depr_arg_names.extend(val)
return depr_arg_names
@classmethod
def from_argparse_args(cls: Type["_T"], args: Union[Namespace, ArgumentParser], **kwargs) -> "_T":
return from_argparse_args(cls, args, **kwargs)
@classmethod
def parse_argparser(cls, arg_parser: Union[ArgumentParser, Namespace]) -> Namespace:
return parse_argparser(cls, arg_parser)
@classmethod
def match_env_arguments(cls) -> Namespace:
return parse_env_variables(cls)
@classmethod
def add_argparse_args(cls, parent_parser: ArgumentParser, **kwargs) -> ArgumentParser:
return add_argparse_args(cls, parent_parser, **kwargs)
"""
State properties
"""
@property
def interrupted(self) -> bool:
return self.state.status == TrainerStatus.INTERRUPTED
@property
def training(self) -> bool:
return self.state.stage == RunningStage.TRAINING
@training.setter
def training(self, val: bool) -> None:
if val:
self.state.stage = RunningStage.TRAINING
elif self.training:
self.state.stage = None
@property
def testing(self) -> bool:
return self.state.stage == RunningStage.TESTING
@testing.setter
def testing(self, val: bool) -> None:
if val:
self.state.stage = RunningStage.TESTING
elif self.testing:
self.state.stage = None
@property
def predicting(self) -> bool:
return self.state.stage == RunningStage.PREDICTING
@predicting.setter
def predicting(self, val: bool) -> None:
if val:
self.state.stage = RunningStage.PREDICTING
elif self.predicting:
self.state.stage = None
@property
def tuning(self) -> bool:
return self.state.stage == RunningStage.TUNING
@tuning.setter
def tuning(self, val: bool) -> None:
if val:
self.state.stage = RunningStage.TUNING
elif self.tuning:
self.state.stage = None
@property
def validating(self) -> bool:
return self.state.stage == RunningStage.VALIDATING
@validating.setter
def validating(self, val: bool) -> None:
if val:
self.state.stage = RunningStage.VALIDATING
elif self.validating:
self.state.stage = None
@property
def evaluating(self) -> bool:
return self.state.stage and self.state.stage.evaluating
@property
def sanity_checking(self) -> bool:
return self.state.stage == RunningStage.SANITY_CHECKING
@sanity_checking.setter
def sanity_checking(self, val: bool) -> None:
if val:
self.state.stage = RunningStage.SANITY_CHECKING
elif self.sanity_checking:
self.state.stage = None
"""
Loop properties
"""
@property
def global_step(self) -> int:
return self.fit_loop.global_step
@property
def current_epoch(self) -> int:
return self.fit_loop.current_epoch
@property
def max_epochs(self) -> Optional[int]:
return self.fit_loop.max_epochs
@property
def min_epochs(self) -> Optional[int]:
return self.fit_loop.min_epochs
@property
def max_steps(self) -> Optional[int]:
return self.fit_loop.max_steps
@property
def min_steps(self) -> Optional[int]:
return self.fit_loop.min_steps
@property
def is_last_batch(self) -> bool:
return self.fit_loop.epoch_loop.is_last_batch
@property
def fit_loop(self) -> FitLoop:
return self._fit_loop
@fit_loop.setter
def fit_loop(self, loop: FitLoop):
"""
Attach a custom fit loop to this Trainer. It will run with
:meth:`~pytorch_lighting.trainer.trainer.Trainer.fit`.
"""
loop.trainer = self
self._fit_loop = loop
@property
def validate_loop(self) -> EvaluationLoop:
return self._validate_loop
@validate_loop.setter
def validate_loop(self, loop: EvaluationLoop):
"""
Attach a custom validation loop to this Trainer. It will run with
:meth:`~pytorch_lighting.trainer.trainer.Trainer.validate`. Note that this loop is different from the one
running during training inside the :meth:`pytorch_lightning.trainer.trainer.Trainer.fit` call.
"""
loop.trainer = self
self._validate_loop = loop
@property
def test_loop(self) -> EvaluationLoop:
return self._test_loop
@test_loop.setter
def test_loop(self, loop: EvaluationLoop):
"""
Attach a custom test loop to this Trainer. It will run with
:meth:`~pytorch_lightning.trainer.trainer.Trainer.test`.
"""
loop.trainer = self
self._test_loop = loop
@property
def predict_loop(self) -> PredictionLoop:
return self._predict_loop
@predict_loop.setter
def predict_loop(self, loop: PredictionLoop):
"""
Attach a custom prediction loop to this Trainer. It will run with
:meth:`~pytorch_lightning.trainer.trainer.Trainer.predict`.
"""
loop.trainer = self
self._predict_loop = loop
@property
def _evaluation_loop(self) -> EvaluationLoop:
if self.state.fn in (TrainerFn.FITTING, TrainerFn.TUNING):
return self.fit_loop.epoch_loop.val_loop
if self.state.fn == TrainerFn.VALIDATING:
return self.validate_loop
if self.state.fn == TrainerFn.TESTING:
return self.test_loop
raise RuntimeError("The `Trainer._evaluation_loop` property isn't defined. Accessed outside of scope")
@property
def _active_loop(self) -> Optional[Union[FitLoop, EvaluationLoop, PredictionLoop]]:
if self.training:
return self.fit_loop
if self.sanity_checking or self.evaluating:
return self._evaluation_loop
if self.predicting:
return self.predict_loop
@property
def _ckpt_path(self) -> Optional[str]:
if self.state.fn == TrainerFn.VALIDATING:
return self.validated_ckpt_path
if self.state.fn == TrainerFn.TESTING:
return self.tested_ckpt_path
if self.state.fn == TrainerFn.PREDICTING:
return self.predicted_ckpt_path
"""
Logging properties
"""
@property
def callback_metrics(self) -> dict:
return self.logger_connector.callback_metrics
@property
def logged_metrics(self) -> dict:
return self.logger_connector.logged_metrics
@property
def progress_bar_metrics(self) -> dict:
return self.logger_connector.progress_bar_metrics
@property
def _results(self) -> Optional[ResultCollection]:
active_loop = self._active_loop
if active_loop is not None:
return active_loop._results
"""
Other
"""
# TODO: refactor this so that it can be done in LightningOptimizer
def __getstate__(self):
# remove lightning_optimizers
self._lightning_optimizers = None
return self.__dict__
def __setstate__(self, state):
self.__dict__ = state
# Used to represent the concrete type TrainerProperties class methods are called on.
_T = TypeVar("_T", bound=TrainerProperties)