lightning/pytorch_lightning/loggers/test_tube.py

213 lines
7.3 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Test Tube
---------
"""
from argparse import Namespace
from typing import Optional, Dict, Any, Union
try:
from test_tube import Experiment
_TEST_TUBE_AVAILABLE = True
except ImportError: # pragma: no-cover
Experiment = None
_TEST_TUBE_AVAILABLE = False
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment
from pytorch_lightning.utilities.distributed import rank_zero_only, rank_zero_warn
from pytorch_lightning.core.lightning import LightningModule
class TestTubeLogger(LightningLoggerBase):
r"""
Log to local file system in `TensorBoard <https://www.tensorflow.org/tensorboard>`_ format
but using a nicer folder structure (see `full docs <https://williamfalcon.github.io/test-tube>`_).
Install it with pip:
.. code-block:: bash
pip install test_tube
Example:
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import TestTubeLogger
>>> logger = TestTubeLogger("tt_logs", name="my_exp_name")
>>> trainer = Trainer(logger=logger)
Use the logger anywhere in your :class:`~pytorch_lightning.core.lightning.LightningModule` as follows:
>>> from pytorch_lightning import LightningModule
>>> class LitModel(LightningModule):
... def training_step(self, batch, batch_idx):
... # example
... self.logger.experiment.whatever_method_summary_writer_supports(...)
...
... def any_lightning_module_function_or_hook(self):
... self.logger.experiment.add_histogram(...)
Args:
save_dir: Save directory
name: Experiment name. Defaults to ``'default'``.
description: A short snippet about this experiment
debug: If ``True``, it doesn't log anything.
version: Experiment version. If version is not specified the logger inspects the save
directory for existing versions, then automatically assigns the next available version.
create_git_tag: If ``True`` creates a git tag to save the code used in this experiment.
log_graph: Adds the computational graph to tensorboard. This requires that
the user has defined the `self.example_input_array` attribute in their
model.
"""
__test__ = False
def __init__(
self,
save_dir: str,
name: str = "default",
description: Optional[str] = None,
debug: bool = False,
version: Optional[int] = None,
create_git_tag: bool = False,
log_graph: bool = False
):
if not _TEST_TUBE_AVAILABLE:
raise ImportError('You want to use `test_tube` logger which is not installed yet,'
' install it with `pip install test-tube`.')
super().__init__()
self._save_dir = save_dir
self._name = name
self.description = description
self.debug = debug
self._version = version
self.create_git_tag = create_git_tag
self._log_graph = log_graph
self._experiment = None
@property
@rank_zero_experiment
def experiment(self) -> Experiment:
r"""
Actual TestTube object. To use TestTube features in your
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
Example::
self.logger.experiment.some_test_tube_function()
"""
if self._experiment is not None:
return self._experiment
self._experiment = Experiment(
save_dir=self.save_dir,
name=self._name,
debug=self.debug,
version=self.version,
description=self.description,
create_git_tag=self.create_git_tag,
rank=rank_zero_only.rank,
)
return self._experiment
@rank_zero_only
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
# TODO: HACK figure out where this is being set to true
self.experiment.debug = self.debug
params = self._convert_params(params)
params = self._flatten_dict(params)
self.experiment.argparse(Namespace(**params))
@rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
# TODO: HACK figure out where this is being set to true
self.experiment.debug = self.debug
self.experiment.log(metrics, global_step=step)
@rank_zero_only
def log_graph(self, model: LightningModule, input_array=None):
if self._log_graph:
if input_array is None:
input_array = model.example_input_array
if input_array is not None:
self.experiment.add_graph(
model,
model.transfer_batch_to_device(
model.example_input_array, model.device)
)
else:
rank_zero_warn('Could not log computational graph since the'
' `model.example_input_array` attribute is not set'
' or `input_array` was not given',
UserWarning)
@rank_zero_only
def save(self) -> None:
super().save()
# TODO: HACK figure out where this is being set to true
self.experiment.debug = self.debug
self.experiment.save()
@rank_zero_only
def finalize(self, status: str) -> None:
super().finalize(status)
# TODO: HACK figure out where this is being set to true
self.experiment.debug = self.debug
self.save()
self.close()
@rank_zero_only
def close(self) -> None:
super().save()
# TODO: HACK figure out where this is being set to true
self.experiment.debug = self.debug
if not self.debug:
exp = self.experiment
exp.close()
@property
def save_dir(self) -> Optional[str]:
return self._save_dir
@property
def name(self) -> str:
if self._experiment is None:
return self._name
else:
return self.experiment.name
@property
def version(self) -> int:
if self._experiment is None:
return self._version
else:
return self.experiment.version
# Test tube experiments are not pickleable, so we need to override a few
# methods to get DDP working. See
# https://docs.python.org/3/library/pickle.html#handling-stateful-objects
# for more info.
def __getstate__(self) -> Dict[Any, Any]:
state = self.__dict__.copy()
state["_experiment"] = self.experiment.get_meta_copy()
return state
def __setstate__(self, state: Dict[Any, Any]):
self._experiment = state["_experiment"].get_non_ddp_exp()
del state["_experiment"]
self.__dict__.update(state)