55 lines
1.6 KiB
Python
55 lines
1.6 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import random
|
|
import string
|
|
|
|
from tests.helpers.imports import Dataset, Example, Field, Iterator
|
|
|
|
|
|
def _generate_random_string(length: int = 10):
|
|
return "".join(random.choices(string.ascii_letters, k=length))
|
|
|
|
|
|
def get_dummy_torchtext_data_iterator(num_samples: int, batch_size: int, include_lengths: bool = False):
|
|
text_field = Field(
|
|
sequential=True,
|
|
pad_first=False, # nosec
|
|
init_token="<s>",
|
|
eos_token="</s>", # nosec
|
|
include_lengths=include_lengths,
|
|
) # nosec
|
|
|
|
dataset = Dataset(
|
|
[
|
|
Example.fromdict({"text": _generate_random_string()}, {"text": ("text", text_field)})
|
|
for _ in range(num_samples)
|
|
],
|
|
{"text": text_field},
|
|
)
|
|
text_field.build_vocab(dataset)
|
|
|
|
iterator = Iterator(
|
|
dataset,
|
|
batch_size=batch_size,
|
|
sort_key=None,
|
|
device=None,
|
|
batch_size_fn=None,
|
|
train=True,
|
|
repeat=False,
|
|
shuffle=None,
|
|
sort=None,
|
|
sort_within_batch=None,
|
|
)
|
|
return iterator, text_field
|