lightning/docs/source/visualize/logging_expert.rst

136 lines
3.9 KiB
ReStructuredText

:orphan:
.. _logging_expert:
########################################
Track and Visualize Experiments (expert)
########################################
**Audience:** Users who want to make their own progress bars or integrate new experiment managers.
----
***********************
Change the progress bar
***********************
If you'd like to change the way the progress bar displays information you can use some of our built-in progress bard or build your own.
----
Use the TQDMProgressBar
=======================
To use the TQDMProgressBar pass it into the *callbacks* :class:`~pytorch_lightning.trainer.trainer.Trainer` argument.
.. code-block:: python
from pytorch_lightning.callbacks import TQDMProgressBar
trainer = Trainer(callbacks=[TQDMProgressBar()])
----
Use the RichProgressBar
=======================
The RichProgressBar can add custom colors and beautiful formatting for your progress bars. First, install the *`rich <https://github.com/Textualize/rich>`_* library
.. code-block:: bash
pip install rich
Then pass the callback into the callbacks :class:`~pytorch_lightning.trainer.trainer.Trainer` argument:
.. code-block:: python
from pytorch_lightning.callbacks import RichProgressBar
trainer = Trainer(callbacks=[RichProgressBar()])
The rich progress bar can also have custom themes
.. code-block:: python
from pytorch_lightning.callbacks import RichProgressBar
from pytorch_lightning.callbacks.progress.rich_progress import RichProgressBarTheme
# create your own theme!
theme = RichProgressBarTheme(description="green_yellow", progress_bar="green1")
# init as normal
progress_bar = RichProgressBar(theme=theme)
trainer = Trainer(callbacks=progress_bar)
----
************************
Customize a progress bar
************************
To customize either the :class:`~pytorch_lightning.callbacks.TQDMProgressBar` or the :class:`~pytorch_lightning.callbacks.RichProgressBar`, subclass it and override any of its methods.
.. code-block:: python
from pytorch_lightning.callbacks import TQDMProgressBar
class LitProgressBar(TQDMProgressBar):
def init_validation_tqdm(self):
bar = super().init_validation_tqdm()
bar.set_description("running validation...")
return bar
----
***************************
Build your own progress bar
***************************
To build your own progress bar, subclass :class:`~pytorch_lightning.callbacks.ProgressBarBase`
.. code-block:: python
from pytorch_lightning.callbacks import ProgressBarBase
class LitProgressBar(ProgressBarBase):
def __init__(self):
super().__init__() # don't forget this :)
self.enable = True
def disable(self):
self.enable = False
def on_train_batch_end(self, trainer, pl_module, outputs, batch_idx):
super().on_train_batch_end(trainer, pl_module, outputs, batch_idx) # don't forget this :)
percent = (self.train_batch_idx / self.total_train_batches) * 100
sys.stdout.flush()
sys.stdout.write(f"{percent:.01f} percent complete \r")
bar = LitProgressBar()
trainer = Trainer(callbacks=[bar])
----
*******************************
Integrate an experiment manager
*******************************
To create an integration between a custom logger and Lightning, subclass :class:`~pytorch_lightning.loggers.base.LightningLoggerBase`
.. code-block:: python
from pytorch_lightning.loggers import Logger
class LitLogger(Logger):
@property
def name(self) -> str:
return "my-experiment"
@property
def version(self):
return "version_0"
def log_metrics(self, metrics, step=None):
print("my logged metrics", metrics)
def log_hyperparams(self, params, *args, **kwargs):
print("my logged hyperparameters", params)