94 lines
2.4 KiB
ReStructuredText
94 lines
2.4 KiB
ReStructuredText
:orphan:
|
|
|
|
TorchMetrics
|
|
============
|
|
|
|
`TorchMetrics <https://torchmetrics.readthedocs.io>`_ is a collection of machine learning metrics for distributed,
|
|
scalable PyTorch models and an easy-to-use API to create custom metrics. It has a collection of 60+ PyTorch metrics implementations and
|
|
is rigorously tested for all edge cases.
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install torchmetrics
|
|
|
|
In TorchMetrics, we offer the following benefits:
|
|
|
|
- A standardized interface to increase reproducibility
|
|
- Reduced Boilerplate
|
|
- Distributed-training compatible
|
|
- Rigorously tested
|
|
- Automatic accumulation over batches
|
|
- Automatic synchronization across multiple devices
|
|
|
|
-----------------
|
|
|
|
Example 1: Functional Metrics
|
|
-----------------------------
|
|
|
|
Below is a simple example for calculating the accuracy using the functional interface:
|
|
|
|
.. code-block:: python
|
|
|
|
import torch
|
|
import torchmetrics
|
|
|
|
# simulate a classification problem
|
|
preds = torch.randn(10, 5).softmax(dim=-1)
|
|
target = torch.randint(5, (10,))
|
|
|
|
acc = torchmetrics.functional.accuracy(preds, target)
|
|
|
|
------------
|
|
|
|
Example 2: Module Metrics
|
|
-------------------------
|
|
|
|
The example below shows how to use the class-based interface:
|
|
|
|
.. code-block:: python
|
|
|
|
import torch
|
|
import torchmetrics
|
|
|
|
# initialize metric
|
|
metric = torchmetrics.Accuracy()
|
|
|
|
n_batches = 10
|
|
for i in range(n_batches):
|
|
# simulate a classification problem
|
|
preds = torch.randn(10, 5).softmax(dim=-1)
|
|
target = torch.randint(5, (10,))
|
|
# metric on current batch
|
|
acc = metric(preds, target)
|
|
print(f"Accuracy on batch {i}: {acc}")
|
|
|
|
# metric on all batches using custom accumulation
|
|
acc = metric.compute()
|
|
print(f"Accuracy on all data: {acc}")
|
|
|
|
# Reseting internal state such that metric ready for new data
|
|
metric.reset()
|
|
|
|
------------
|
|
|
|
Example 3: TorchMetrics with Lightning
|
|
--------------------------------------
|
|
|
|
The example below shows how to use a metric in your :doc:`LightningModule <../common/lightning_module>`:
|
|
|
|
.. code-block:: python
|
|
|
|
class MyModel(LightningModule):
|
|
def __init__(self):
|
|
...
|
|
self.accuracy = torchmetrics.Accuracy()
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
preds = self(x)
|
|
...
|
|
# log step metric
|
|
self.accuracy(preds, y)
|
|
self.log("train_acc_step", self.accuracy, on_epoch=True)
|
|
...
|