lightning/tests
Carlos Mocholí 111d9c7267
Prune deprecated hparams setter (#6207)
2021-02-27 13:24:50 +01:00
..
accelerators prune deprecated profiler as bool (#6164) 2021-02-24 09:08:21 +00:00
base prune deprecated profiler as bool (#6164) 2021-02-24 09:08:21 +00:00
callbacks Add checkpoint parameter to on_save_checkpoint (#6072) 2021-02-25 21:18:19 +05:30
checkpointing Prune deprecated Trainer(checkpoint_callback=ModelCheckpoint()) (#6166) 2021-02-25 20:42:23 +00:00
core fixing miss-leading tested acc values (#5876) 2021-02-23 22:08:46 +00:00
deprecated_api Prune deprecated hparams setter (#6207) 2021-02-27 13:24:50 +01:00
helpers Add checkpoint parameter to on_save_checkpoint (#6072) 2021-02-25 21:18:19 +05:30
loggers fix(wandb): prevent WandbLogger from dropping values (#5931) 2021-02-27 01:52:23 +00:00
metrics Fix: Allow hashing of metrics with lists in their state (#5939) 2021-02-18 09:54:12 +00:00
models Prune deprecated hparams setter (#6207) 2021-02-27 13:24:50 +01:00
overrides mini refactor for _running_stage access (#5724) 2021-02-22 12:01:54 +01:00
plugins prune deprecated Trainer arg `enable_pl_optimizer` (#6163) 2021-02-24 10:01:24 +00:00
trainer Prune deprecated hparams setter (#6207) 2021-02-27 13:24:50 +01:00
tuner formatting tests1/n (#5843) 2021-02-06 08:22:10 -05:00
utilities prune deprecated Trainer arg `enable_pl_optimizer` (#6163) 2021-02-24 10:01:24 +00:00
README.md Fix pre-commit trailing-whitespace and end-of-file-fixer hooks. (#5387) 2021-01-26 14:27:56 +01:00
__init__.py fix/test quant (#6040) 2021-02-18 10:47:29 +00:00
collect_env_details.py add copyright to tests (#5143) 2021-01-05 09:57:37 +01:00
conftest.py PoC: Accelerator refactor (#5743) 2021-02-12 15:48:56 -05:00
mnode_tests.txt Mnodes (#5020) 2021-02-04 20:55:40 +01:00
special_tests.sh Expose DeepSpeed FP16 parameters due to loss instability (#6115) 2021-02-21 21:43:11 +01:00
test_profiler.py formatting flake8 & isort (#5824) 2021-02-05 18:33:12 -05:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

Install Open MPI or another MPI implementation. Learn how to install Open MPI on this page.

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install AMP support
bash requirements/install_AMP.sh

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.
  3. Horovod with NCCL support: HOROVOD_GPU_OPERATIONS=NCCL pip install horovod

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.4 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.4 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-torch1.4 bash
docker image rm pytorch_lightning:devel-torch1.4