165 lines
5.7 KiB
Python
165 lines
5.7 KiB
Python
from torch.nn import DataParallel
|
|
from torch.nn.parallel import DistributedDataParallel
|
|
import itertools
|
|
|
|
import threading
|
|
import torch
|
|
from torch.cuda._utils import _get_device_index
|
|
import pdb
|
|
|
|
|
|
def _find_tensors(obj):
|
|
r"""
|
|
Recursively find all tensors contained in the specified object.
|
|
"""
|
|
if isinstance(obj, torch.Tensor):
|
|
return [obj]
|
|
if isinstance(obj, (list, tuple)):
|
|
return itertools.chain(*map(_find_tensors, obj))
|
|
if isinstance(obj, dict):
|
|
return itertools.chain(*map(_find_tensors, obj.values()))
|
|
return []
|
|
|
|
|
|
|
|
def get_a_var(obj):
|
|
if isinstance(obj, torch.Tensor):
|
|
return obj
|
|
|
|
if isinstance(obj, list) or isinstance(obj, tuple):
|
|
for result in map(get_a_var, obj):
|
|
if isinstance(result, torch.Tensor):
|
|
return result
|
|
if isinstance(obj, dict):
|
|
for result in map(get_a_var, obj.items()):
|
|
if isinstance(result, torch.Tensor):
|
|
return result
|
|
return None
|
|
|
|
|
|
class LightningDataParallel(DataParallel):
|
|
"""
|
|
Override the forward call in lightning so it goes to training and validation step respectively
|
|
"""
|
|
|
|
def parallel_apply(self, replicas, inputs, kwargs):
|
|
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
|
|
|
|
|
|
class LightningDistributedDataParallel(DistributedDataParallel):
|
|
"""
|
|
Override the forward call in lightning so it goes to training and validation step respectively
|
|
"""
|
|
|
|
def parallel_apply(self, replicas, inputs, kwargs):
|
|
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
|
|
|
|
def forward(self, *inputs, **kwargs):
|
|
self._sync_params()
|
|
if self.device_ids:
|
|
inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
|
|
if len(self.device_ids) == 1:
|
|
# --------------
|
|
# LIGHTNING MOD
|
|
# --------------
|
|
# normal
|
|
# output = self.module(*inputs[0], **kwargs[0])
|
|
|
|
# lightning
|
|
if self.module.training:
|
|
output = self.module.training_step(*inputs[0], **kwargs[0])
|
|
else:
|
|
output = self.module.validation_step(*inputs[0], **kwargs[0])
|
|
else:
|
|
outputs = self.parallel_apply(self._module_copies[:len(inputs)], inputs, kwargs)
|
|
output = self.gather(outputs, self.output_device)
|
|
else:
|
|
output = self.module(*inputs, **kwargs)
|
|
|
|
if torch.is_grad_enabled():
|
|
# We'll return the output object verbatim since it is a freeform
|
|
# object. We need to find any tensors in this object, though,
|
|
# because we need to figure out which parameters were used during
|
|
# this forward pass, to ensure we short circuit reduction for any
|
|
# unused parameters. Only if `find_unused_parameters` is set.
|
|
if self.find_unused_parameters:
|
|
self.reducer.prepare_for_backward(list(_find_tensors(output)))
|
|
else:
|
|
self.reducer.prepare_for_backward([])
|
|
return output
|
|
|
|
|
|
def parallel_apply(modules, inputs, kwargs_tup=None, devices=None):
|
|
r"""Applies each `module` in :attr:`modules` in parallel on arguments
|
|
contained in :attr:`inputs` (positional) and :attr:`kwargs_tup` (keyword)
|
|
on each of :attr:`devices`.
|
|
|
|
Args:
|
|
modules (Module): modules to be parallelized
|
|
inputs (tensor): inputs to the modules
|
|
devices (list of int or torch.device): CUDA devices
|
|
|
|
:attr:`modules`, :attr:`inputs`, :attr:`kwargs_tup` (if given), and
|
|
:attr:`devices` (if given) should all have same length. Moreover, each
|
|
element of :attr:`inputs` can either be a single object as the only argument
|
|
to a module, or a collection of positional arguments.
|
|
"""
|
|
assert len(modules) == len(inputs)
|
|
if kwargs_tup is not None:
|
|
assert len(modules) == len(kwargs_tup)
|
|
else:
|
|
kwargs_tup = ({},) * len(modules)
|
|
if devices is not None:
|
|
assert len(modules) == len(devices)
|
|
else:
|
|
devices = [None] * len(modules)
|
|
devices = list(map(lambda x: _get_device_index(x, True), devices))
|
|
lock = threading.Lock()
|
|
results = {}
|
|
grad_enabled = torch.is_grad_enabled()
|
|
|
|
def _worker(i, module, input, kwargs, device=None):
|
|
torch.set_grad_enabled(grad_enabled)
|
|
if device is None:
|
|
device = get_a_var(input).get_device()
|
|
try:
|
|
with torch.cuda.device(device):
|
|
# this also avoids accidental slicing of `input` if it is a Tensor
|
|
if not isinstance(input, (list, tuple)):
|
|
input = (input,)
|
|
|
|
# ---------------
|
|
# CHANGE
|
|
if module.training:
|
|
output = module.training_step(*input, **kwargs)
|
|
else:
|
|
output = module.validation_step(*input, **kwargs)
|
|
# ---------------
|
|
|
|
with lock:
|
|
results[i] = output
|
|
except Exception as e:
|
|
with lock:
|
|
results[i] = e
|
|
|
|
if len(modules) > 1:
|
|
threads = [threading.Thread(target=_worker,
|
|
args=(i, module, input, kwargs, device))
|
|
for i, (module, input, kwargs, device) in
|
|
enumerate(zip(modules, inputs, kwargs_tup, devices))]
|
|
|
|
for thread in threads:
|
|
thread.start()
|
|
for thread in threads:
|
|
thread.join()
|
|
else:
|
|
_worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0])
|
|
|
|
outputs = []
|
|
for i in range(len(inputs)):
|
|
output = results[i]
|
|
if isinstance(output, Exception):
|
|
raise output
|
|
outputs.append(output)
|
|
return outputs
|