lightning/tests/trainer/test_dataloaders.py

325 lines
9.4 KiB
Python

import pytest
import tests.models.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.utilities.debugging import MisconfigurationException
from tests.models import (
TestModelBase,
LightningTestModel,
LightEmptyTestStep,
LightValidationMultipleDataloadersMixin,
LightTestMultipleDataloadersMixin,
LightTestFitSingleTestDataloadersMixin,
LightTestFitMultipleTestDataloadersMixin,
LightValStepFitMultipleDataloadersMixin,
LightValStepFitSingleDataloaderMixin,
LightTrainDataloader,
)
def test_multiple_val_dataloader(tmpdir):
"""Verify multiple val_dataloader."""
tutils.reset_seed()
class CurrentTestModel(
LightTrainDataloader,
LightValidationMultipleDataloadersMixin,
TestModelBase,
):
pass
hparams = tutils.get_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=1.0,
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
# verify training completed
assert result == 1
# verify there are 2 val loaders
assert len(trainer.val_dataloaders) == 2, \
'Multiple val_dataloaders not initiated properly'
# make sure predictions are good for each val set
for dataloader in trainer.val_dataloaders:
tutils.run_prediction(dataloader, trainer.model)
def test_multiple_test_dataloader(tmpdir):
"""Verify multiple test_dataloader."""
tutils.reset_seed()
class CurrentTestModel(
LightTrainDataloader,
LightTestMultipleDataloadersMixin,
LightEmptyTestStep,
TestModelBase,
):
pass
hparams = tutils.get_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2
)
# fit model
trainer = Trainer(**trainer_options)
trainer.fit(model)
trainer.test()
# verify there are 2 val loaders
assert len(trainer.test_dataloaders) == 2, \
'Multiple test_dataloaders not initiated properly'
# make sure predictions are good for each test set
for dataloader in trainer.test_dataloaders:
tutils.run_prediction(dataloader, trainer.model)
# run the test method
trainer.test()
def test_train_dataloaders_passed_to_fit(tmpdir):
""" Verify that train dataloader can be passed to fit """
tutils.reset_seed()
class CurrentTestModel(LightTrainDataloader, TestModelBase):
pass
hparams = tutils.get_hparams()
# logger file to get meta
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2
)
# only train passed to fit
model = CurrentTestModel(hparams)
trainer = Trainer(**trainer_options)
fit_options = dict(train_dataloader=model._dataloader(train=True))
results = trainer.fit(model, **fit_options)
def test_train_val_dataloaders_passed_to_fit(tmpdir):
""" Verify that train & val dataloader can be passed to fit """
tutils.reset_seed()
class CurrentTestModel(
LightTrainDataloader,
LightValStepFitSingleDataloaderMixin,
TestModelBase,
):
pass
hparams = tutils.get_hparams()
# logger file to get meta
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2
)
# train, val passed to fit
model = CurrentTestModel(hparams)
trainer = Trainer(**trainer_options)
fit_options = dict(train_dataloader=model._dataloader(train=True),
val_dataloaders=model._dataloader(train=False))
results = trainer.fit(model, **fit_options)
assert len(trainer.val_dataloaders) == 1, \
f"`val_dataloaders` not initiated properly, got {trainer.val_dataloaders}"
def test_all_dataloaders_passed_to_fit(tmpdir):
""" Verify train, val & test dataloader can be passed to fit """
tutils.reset_seed()
class CurrentTestModel(
LightTrainDataloader,
LightValStepFitSingleDataloaderMixin,
LightTestFitSingleTestDataloadersMixin,
LightEmptyTestStep,
TestModelBase,
):
pass
hparams = tutils.get_hparams()
# logger file to get meta
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2
)
# train, val and test passed to fit
model = CurrentTestModel(hparams)
trainer = Trainer(**trainer_options)
fit_options = dict(train_dataloader=model._dataloader(train=True),
val_dataloaders=model._dataloader(train=False),
test_dataloaders=model._dataloader(train=False))
results = trainer.fit(model, **fit_options)
trainer.test()
assert len(trainer.val_dataloaders) == 1, \
f"val_dataloaders` not initiated properly, got {trainer.val_dataloaders}"
assert len(trainer.test_dataloaders) == 1, \
f"test_dataloaders` not initiated properly, got {trainer.test_dataloaders}"
def test_multiple_dataloaders_passed_to_fit(tmpdir):
"""Verify that multiple val & test dataloaders can be passed to fit."""
tutils.reset_seed()
class CurrentTestModel(
LightningTestModel,
LightValStepFitMultipleDataloadersMixin,
LightTestFitMultipleTestDataloadersMixin,
):
pass
hparams = tutils.get_hparams()
# logger file to get meta
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2
)
# train, multiple val and multiple test passed to fit
model = CurrentTestModel(hparams)
trainer = Trainer(**trainer_options)
fit_options = dict(train_dataloader=model._dataloader(train=True),
val_dataloaders=[model._dataloader(train=False),
model._dataloader(train=False)],
test_dataloaders=[model._dataloader(train=False),
model._dataloader(train=False)])
results = trainer.fit(model, **fit_options)
trainer.test()
assert len(trainer.val_dataloaders) == 2, \
f"Multiple `val_dataloaders` not initiated properly, got {trainer.val_dataloaders}"
assert len(trainer.test_dataloaders) == 2, \
f"Multiple `test_dataloaders` not initiated properly, got {trainer.test_dataloaders}"
def test_mixing_of_dataloader_options(tmpdir):
"""Verify that dataloaders can be passed to fit"""
tutils.reset_seed()
class CurrentTestModel(
LightTrainDataloader,
LightValStepFitSingleDataloaderMixin,
LightTestFitSingleTestDataloadersMixin,
TestModelBase,
):
pass
hparams = tutils.get_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2
)
# fit model
trainer = Trainer(**trainer_options)
fit_options = dict(val_dataloaders=model._dataloader(train=False))
results = trainer.fit(model, **fit_options)
# fit model
trainer = Trainer(**trainer_options)
fit_options = dict(val_dataloaders=model._dataloader(train=False),
test_dataloaders=model._dataloader(train=False))
_ = trainer.fit(model, **fit_options)
trainer.test()
assert len(trainer.val_dataloaders) == 1, \
f"`val_dataloaders` not initiated properly, got {trainer.val_dataloaders}"
assert len(trainer.test_dataloaders) == 1, \
f"test_dataloaders` not initiated properly, got {trainer.test_dataloaders}"
def test_inf_train_dataloader(tmpdir):
"""Test inf train data loader (e.g. IterableDataset)"""
tutils.reset_seed()
class CurrentTestModel(LightningTestModel):
def train_dataloader(self):
dataloader = self._dataloader(train=True)
class CustomInfDataLoader:
def __init__(self, dataloader):
self.dataloader = dataloader
self.iter = iter(dataloader)
self.count = 0
def __iter__(self):
self.count = 0
return self
def __next__(self):
if self.count >= 5:
raise StopIteration
self.count = self.count + 1
try:
return next(self.iter)
except StopIteration:
self.iter = iter(self.dataloader)
return next(self.iter)
return CustomInfDataLoader(dataloader)
hparams = tutils.get_hparams()
model = CurrentTestModel(hparams)
# fit model
with pytest.raises(MisconfigurationException):
trainer = Trainer(
default_save_path=tmpdir,
max_epochs=1,
val_check_interval=0.5
)
trainer.fit(model)
# logger file to get meta
trainer = Trainer(
default_save_path=tmpdir,
max_epochs=1,
val_check_interval=50,
)
result = trainer.fit(model)
# verify training completed
assert result == 1