174 lines
5.6 KiB
Python
174 lines
5.6 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import pickle
|
|
from unittest.mock import MagicMock
|
|
|
|
import pytest
|
|
import torch
|
|
from torch.utils.data import DataLoader, Dataset
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.demos.boring_classes import BoringModel, RandomDataset
|
|
from pytorch_lightning.plugins import DoublePrecisionPlugin
|
|
from tests_pytorch.helpers.runif import RunIf
|
|
|
|
|
|
class RandomFloatIntDataset(Dataset):
|
|
def __init__(self, size, length):
|
|
self.len = length
|
|
self.float_data = torch.randn(length, size)
|
|
self.int_data = torch.randint(10, (length, 1))
|
|
|
|
def __getitem__(self, index):
|
|
return self.float_data[index], self.int_data[index]
|
|
|
|
def __len__(self):
|
|
return self.len
|
|
|
|
|
|
class DoublePrecisionBoringModel(BoringModel):
|
|
def training_step(self, batch, batch_idx):
|
|
float_data, int_data = batch
|
|
assert torch.tensor([0.0]).dtype == torch.float64
|
|
assert torch.tensor([0.0], dtype=torch.float16).dtype == torch.float16
|
|
assert float_data.dtype == torch.float64
|
|
output = self(float_data)
|
|
loss = self.loss(batch, output)
|
|
return {"loss": loss}
|
|
|
|
def training_epoch_end(self, outputs) -> None:
|
|
assert torch.tensor([0.0]).dtype == torch.float32
|
|
return super().training_epoch_end(outputs)
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
assert batch.dtype == torch.float64
|
|
assert torch.tensor([0.0]).dtype == torch.float64
|
|
assert torch.tensor([0.0], dtype=torch.float16).dtype == torch.float16
|
|
output = self(batch)
|
|
loss = self.loss(batch, output)
|
|
return {"x": loss}
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
assert batch.dtype == torch.float64
|
|
assert torch.tensor([0.0]).dtype == torch.float64
|
|
assert torch.tensor([0.0], dtype=torch.float16).dtype == torch.float16
|
|
output = self(batch)
|
|
loss = self.loss(batch, output)
|
|
return {"y": loss}
|
|
|
|
def predict_step(self, batch, batch_idx, dataloader_idx=0):
|
|
assert batch.dtype == torch.float64
|
|
assert torch.tensor([0.0]).dtype == torch.float64
|
|
assert torch.tensor([0.0], dtype=torch.float16).dtype == torch.float16
|
|
return self(batch)
|
|
|
|
def on_fit_start(self):
|
|
assert self.layer.weight.dtype == torch.float64
|
|
|
|
def on_after_backward(self):
|
|
assert self.layer.weight.grad.dtype == torch.float64
|
|
|
|
def train_dataloader(self):
|
|
dataset = RandomFloatIntDataset(32, 64)
|
|
assert dataset.float_data.dtype == torch.float32 # Don't start with double data
|
|
return DataLoader(dataset)
|
|
|
|
def predict_dataloader(self):
|
|
return DataLoader(RandomDataset(32, 64))
|
|
|
|
|
|
class DoublePrecisionBoringModelNoForward(BoringModel):
|
|
def training_step(self, batch, batch_idx):
|
|
assert batch.dtype == torch.float64
|
|
output = self.layer(batch)
|
|
assert output.dtype == torch.float64
|
|
loss = self.loss(batch, output)
|
|
return {"loss": loss}
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
assert batch.dtype == torch.float64
|
|
output = self.layer(batch)
|
|
assert output.dtype == torch.float64
|
|
loss = self.loss(batch, output)
|
|
return {"x": loss}
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
assert batch.dtype == torch.float64
|
|
output = self.layer(batch)
|
|
assert output.dtype == torch.float64
|
|
loss = self.loss(batch, output)
|
|
return {"y": loss}
|
|
|
|
def predict_step(self, batch, batch_idx, dataloader_idx=0):
|
|
assert batch.dtype == torch.float64
|
|
output = self.layer(batch)
|
|
assert output.dtype == torch.float64
|
|
return output
|
|
|
|
def predict_dataloader(self):
|
|
return DataLoader(RandomDataset(32, 64))
|
|
|
|
|
|
class DoublePrecisionBoringModelComplexBuffer(BoringModel):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
self.register_buffer("complex_buffer", torch.complex(torch.rand(10), torch.rand(10)), False)
|
|
|
|
def on_fit_start(self):
|
|
assert self.layer.weight.dtype == torch.float64
|
|
assert self.complex_buffer.dtype == torch.complex64
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"boring_model",
|
|
[
|
|
DoublePrecisionBoringModel,
|
|
DoublePrecisionBoringModelNoForward,
|
|
DoublePrecisionBoringModelComplexBuffer,
|
|
],
|
|
)
|
|
def test_double_precision(tmpdir, boring_model):
|
|
model = boring_model()
|
|
|
|
trainer = Trainer(max_epochs=2, default_root_dir=tmpdir, fast_dev_run=2, precision=64, log_every_n_steps=1)
|
|
trainer.fit(model)
|
|
trainer.test(model)
|
|
trainer.predict(model)
|
|
|
|
|
|
@RunIf(min_cuda_gpus=2)
|
|
def test_double_precision_ddp(tmpdir):
|
|
model = DoublePrecisionBoringModel()
|
|
|
|
trainer = Trainer(
|
|
max_epochs=1,
|
|
default_root_dir=tmpdir,
|
|
strategy="ddp_spawn",
|
|
accelerator="gpu",
|
|
devices=2,
|
|
fast_dev_run=2,
|
|
precision=64,
|
|
log_every_n_steps=1,
|
|
)
|
|
trainer.fit(model)
|
|
trainer.validate(model)
|
|
|
|
|
|
def test_double_precision_pickle(tmpdir):
|
|
model = BoringModel()
|
|
plugin = DoublePrecisionPlugin()
|
|
model, _, __ = plugin.connect(model, MagicMock(), MagicMock())
|
|
pickle.dumps(model)
|