lightning/tests/tests_pytorch/plugins/test_amp_plugins.py

288 lines
10 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from unittest import mock
import pytest
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.demos.boring_classes import BoringModel
from pytorch_lightning.plugins import ApexMixedPrecisionPlugin, NativeMixedPrecisionPlugin
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests_pytorch.conftest import mock_cuda_count
from tests_pytorch.helpers.runif import RunIf
class MyNativeAMP(NativeMixedPrecisionPlugin):
pass
class MyApexPlugin(ApexMixedPrecisionPlugin):
pass
@RunIf(mps=False)
@mock.patch.dict(
os.environ,
{
"CUDA_VISIBLE_DEVICES": "0,1",
"SLURM_NTASKS": "2",
"SLURM_NTASKS_PER_NODE": "1",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"LOCAL_RANK": "0",
"SLURM_PROCID": "0",
"SLURM_LOCALID": "0",
},
)
@pytest.mark.parametrize("strategy,devices", [("ddp", 2), ("ddp_spawn", 2)])
@pytest.mark.parametrize(
"amp,custom_plugin,plugin_cls",
[
("native", False, NativeMixedPrecisionPlugin),
("native", True, MyNativeAMP),
pytest.param("apex", False, ApexMixedPrecisionPlugin, marks=RunIf(amp_apex=True)),
pytest.param("apex", True, MyApexPlugin, marks=RunIf(amp_apex=True)),
],
)
def test_amp_apex_ddp(cuda_count_2, strategy, devices, amp, custom_plugin, plugin_cls):
plugin = None
if custom_plugin:
plugin = plugin_cls(16, "cpu") if amp == "native" else plugin_cls()
trainer = Trainer(
fast_dev_run=True,
precision=16,
amp_backend=amp,
accelerator="gpu",
devices=devices,
strategy=strategy,
plugins=plugin,
)
assert isinstance(trainer.precision_plugin, plugin_cls)
class TestClippingOptimizer(torch.optim.SGD):
def step(self, *args, pl_module=None):
pl_module.check_grads_clipped()
return super().step(*args)
class TestPrecisionModel(BoringModel):
# sister test: tests/trainer/optimization/test_manual_optimization.py::test_multiple_optimizers_step
def on_after_backward(self) -> None:
# check grads are scaled
scale = self.trainer.precision_plugin.scaler.get_scale()
assert scale != 1.0 # the return value if not enabled
grads = [p.grad for p in self.parameters()]
inv_scale = 1 / scale
self.original_grads = [p * inv_scale for p in grads]
def check_grads_unscaled(self, optimizer=None):
if optimizer is not None:
scaler = self.trainer.precision_plugin.scaler
state = scaler._per_optimizer_states[id(optimizer)]
assert state["stage"].name == "UNSCALED"
grads = [p.grad for p in self.parameters()]
assert len(grads) == len(self.original_grads)
for actual, expected in zip(grads, self.original_grads):
torch.testing.assert_close(actual, expected, equal_nan=True)
def check_grads_clipped(self):
parameters = list(self.parameters())
assert len(parameters) == len(self.clipped_parameters)
for actual, expected in zip(parameters, self.clipped_parameters):
torch.testing.assert_close(actual.grad, expected.grad, equal_nan=True)
def on_before_optimizer_step(self, optimizer, *_):
self.check_grads_unscaled(optimizer)
# manually clip
self.clipped_parameters = []
for p in self.parameters():
copy = p.detach().clone()
copy.grad = p.grad.clone()
self.clipped_parameters.append(copy)
clip_val = self.trainer.gradient_clip_val
torch.nn.utils.clip_grad_value_(self.clipped_parameters, clip_val)
def log_grad_norm(self, grad_norm_dict):
self.check_grads_unscaled()
assert len(grad_norm_dict)
def configure_gradient_clipping(self, *args, **kwargs):
# let lightning clip
super().configure_gradient_clipping(*args, **kwargs)
# check clipping worked as expected
self.check_grads_clipped()
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, closure, **_):
# pass self as a kwarg
optimizer.step(closure, pl_module=self)
def configure_optimizers(self):
return TestClippingOptimizer(self.layer.parameters(), lr=0.1)
@RunIf(min_cuda_gpus=2)
@pytest.mark.parametrize("accum", [1, 2])
def test_amp_gradient_unscale(tmpdir, accum: int):
model = TestPrecisionModel()
trainer = Trainer(
max_epochs=2,
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=0,
amp_backend="native",
strategy="ddp_spawn",
accelerator="gpu",
devices=2,
precision=16,
track_grad_norm=2,
# use a tiny value to make sure it works
gradient_clip_val=1e-3,
gradient_clip_algorithm="value",
log_every_n_steps=1,
accumulate_grad_batches=accum,
enable_progress_bar=False,
)
trainer.fit(model)
@RunIf(min_cuda_gpus=1)
def test_amp_skip_optimizer(tmpdir):
"""Test that optimizers can be skipped when using amp."""
class CustomBoringModel(BoringModel):
def __init__(self):
super().__init__()
self.layer1 = torch.nn.Linear(32, 32)
self.layer2 = torch.nn.Linear(32, 2)
def forward(self, x: torch.Tensor):
x = self.layer1(x)
x = self.layer2(x)
return x
def training_step(self, batch, batch_idx, optimizer_idx):
if optimizer_idx == 1:
return None
output = self(batch)
return self.loss(batch, output)
def configure_optimizers(self):
return [
torch.optim.SGD(self.layer1.parameters(), lr=0.1),
torch.optim.SGD(self.layer2.parameters(), lr=0.1),
]
trainer = Trainer(
default_root_dir=tmpdir, accelerator="gpu", devices=1, fast_dev_run=1, amp_backend="native", precision=16
)
model = CustomBoringModel()
trainer.fit(model)
@RunIf(min_cuda_gpus=2, amp_apex=True, standalone=True)
@pytest.mark.parametrize("amp_level", ["O2"])
def test_amp_apex_ddp_fit(amp_level, tmpdir):
class CustomBoringModel(BoringModel):
def training_step(self, batch, batch_idx):
assert self.layer.weight.dtype == torch.float16
assert self.trainer.precision_plugin._connected
return super().training_step(batch, batch_idx)
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
precision=16,
amp_backend="apex",
accelerator="gpu",
devices=2,
strategy="ddp",
plugins=ApexMixedPrecisionPlugin(amp_level=amp_level),
enable_progress_bar=False,
enable_model_summary=False,
)
assert isinstance(trainer.precision_plugin, ApexMixedPrecisionPlugin)
model = CustomBoringModel()
trainer.fit(model)
trainer.test(model)
@RunIf(min_cuda_gpus=2, amp_apex=True)
@pytest.mark.parametrize("amp_level", ["O2"])
def test_amp_apex_ddp_spawn_fit(amp_level, tmpdir):
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
precision=16,
amp_backend="apex",
accelerator="gpu",
devices=2,
strategy="ddp_spawn",
plugins=ApexMixedPrecisionPlugin(amp_level=amp_level),
)
assert isinstance(trainer.precision_plugin, ApexMixedPrecisionPlugin)
model = BoringModel()
trainer.fit(model)
@RunIf(min_torch="1.10")
def test_cpu_amp_precision_context_manager(tmpdir):
"""Test to ensure that the context manager correctly is set to CPU + bfloat16."""
plugin = NativeMixedPrecisionPlugin("bf16", "cpu")
assert plugin.device == "cpu"
assert plugin.scaler is None
context_manager = plugin.autocast_context_manager()
assert isinstance(context_manager, torch.autocast)
# check with str due to a bug upstream: https://github.com/pytorch/pytorch/issues/65786
assert str(context_manager.fast_dtype) == str(torch.bfloat16)
def test_precision_selection_raises(monkeypatch):
with pytest.raises(
MisconfigurationException, match=r"precision=16, amp_type='apex'\)` but apex AMP not supported on CPU"
):
Trainer(amp_backend="apex", precision=16)
import pytorch_lightning.plugins.precision.native_amp as amp
monkeypatch.setattr(amp, "_TORCH_GREATER_EQUAL_1_10", False)
with pytest.warns(
UserWarning, match=r"precision=16\)` but native AMP is not supported on CPU. Using `precision='bf16"
), pytest.raises(MisconfigurationException, match="must install torch greater or equal to 1.10"):
Trainer(precision=16)
with pytest.raises(MisconfigurationException, match="must install torch greater or equal to 1.10"):
Trainer(precision="bf16")
with pytest.raises(MisconfigurationException, match=r"amp_type='apex', precision='bf16'\)` but it's not supported"):
Trainer(amp_backend="apex", precision="bf16")
mock_cuda_count(monkeypatch, 1)
with pytest.raises(MisconfigurationException, match="Sharded plugins are not supported with apex"):
with mock.patch("lightning_lite.accelerators.cuda.is_cuda_available", return_value=True):
Trainer(amp_backend="apex", precision=16, accelerator="gpu", devices=1, strategy="ddp_fully_sharded")
import pytorch_lightning.plugins.precision.apex_amp as apex
monkeypatch.setattr(apex, "_APEX_AVAILABLE", False)
with mock.patch("lightning_lite.accelerators.cuda.is_cuda_available", return_value=True), pytest.raises(
MisconfigurationException, match="asked for Apex AMP but `apex` is not installed"
):
Trainer(amp_backend="apex", precision=16, accelerator="gpu", devices=1)