68 lines
2.5 KiB
Python
68 lines
2.5 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from typing import Any, Mapping
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.strategies import DDPStrategy, SingleDeviceStrategy
|
|
from tests.helpers import BoringModel
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
class CustomParallelStrategy(DDPStrategy):
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
# Set to None so it will be overwritten by the accelerator connector.
|
|
self.sync_batchnorm = None
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
def test_sync_batchnorm_set(tmpdir):
|
|
"""Tests if sync_batchnorm is automatically set for custom plugin."""
|
|
model = BoringModel()
|
|
strategy = CustomParallelStrategy()
|
|
assert strategy.sync_batchnorm is None
|
|
trainer = Trainer(max_epochs=1, strategy=strategy, default_root_dir=tmpdir, sync_batchnorm=True)
|
|
trainer.fit(model)
|
|
assert strategy.sync_batchnorm is True
|
|
|
|
|
|
@pytest.mark.parametrize("restore_optimizer_and_schedulers", [True, False])
|
|
def test_strategy_lightning_restore_optimizer_and_schedulers(tmpdir, restore_optimizer_and_schedulers):
|
|
class TestStrategy(SingleDeviceStrategy):
|
|
load_optimizer_state_dict_called = False
|
|
|
|
@property
|
|
def lightning_restore_optimizer(self) -> bool:
|
|
return restore_optimizer_and_schedulers
|
|
|
|
def load_optimizer_state_dict(self, checkpoint: Mapping[str, Any]) -> None:
|
|
self.load_optimizer_state_dict_called = True
|
|
|
|
# create ckpt to resume from
|
|
checkpoint_path = os.path.join(tmpdir, "model.ckpt")
|
|
model = BoringModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
|
|
trainer.fit(model)
|
|
trainer.save_checkpoint(checkpoint_path)
|
|
|
|
model = BoringModel()
|
|
strategy = TestStrategy(torch.device("cpu"))
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, strategy=strategy)
|
|
trainer.fit(model, ckpt_path=checkpoint_path)
|
|
assert strategy.load_optimizer_state_dict_called == restore_optimizer_and_schedulers
|