lightning/tests/helpers/deterministic_model.py

129 lines
4.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import nn
from torch.utils.data import DataLoader, Dataset
from pytorch_lightning.core.lightning import LightningModule
class DeterministicModel(LightningModule):
def __init__(self, weights=None):
super().__init__()
self.training_step_called = False
self.training_step_end_called = False
self.training_epoch_end_called = False
self.validation_step_called = False
self.validation_step_end_called = False
self.validation_epoch_end_called = False
self.assert_backward = True
self.l1 = nn.Linear(2, 3, bias=False)
if weights is None:
weights = torch.tensor([[4, 3, 5], [10, 11, 13]]).float()
p = torch.nn.Parameter(weights, requires_grad=True)
self.l1.weight = p
def forward(self, x):
return self.l1(x)
def step(self, batch, batch_idx):
x = batch
bs = x.size(0)
y_hat = self.l1(x)
test_hat = y_hat.cpu().detach()
assert torch.all(test_hat[:, 0] == 15.0)
assert torch.all(test_hat[:, 1] == 42.0)
out = y_hat.sum()
assert out == (42.0 * bs) + (15.0 * bs)
return out
def count_num_graphs(self, result, num_graphs=0):
for k, v in result.items():
if isinstance(v, torch.Tensor) and v.grad_fn is not None:
num_graphs += 1
if isinstance(v, dict):
num_graphs += self.count_num_graphs(v)
return num_graphs
def validation_step_end(self, val_step_output):
assert len(val_step_output) == 3
assert val_step_output["val_loss"] == 171
assert val_step_output["log"]["log_acc1"] >= 12
assert val_step_output["progress_bar"]["pbar_acc1"] == 17
self.validation_step_end_called = True
val_step_output["val_step_end"] = torch.tensor(1802)
return val_step_output
def validation_epoch_end(self, outputs):
assert len(outputs) == self.trainer.num_val_batches[0]
for i, out in enumerate(outputs):
assert out["log"]["log_acc1"] >= 12 + i
self.validation_epoch_end_called = True
result = outputs[-1]
result["val_epoch_end"] = torch.tensor(1233)
return result
# -----------------------------
# DATA
# -----------------------------
def train_dataloader(self):
return DataLoader(DummyDataset(), batch_size=3, shuffle=False)
def val_dataloader(self):
return DataLoader(DummyDataset(), batch_size=3, shuffle=False)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0)
def configure_optimizers__lr_on_plateau_epoch(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
scheduler = {"scheduler": lr_scheduler, "interval": "epoch", "monitor": "epoch_end_log_1"}
return [optimizer], [scheduler]
def configure_optimizers__lr_on_plateau_step(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
scheduler = {"scheduler": lr_scheduler, "interval": "step", "monitor": "pbar_acc1"}
return [optimizer], [scheduler]
def backward(self, loss, optimizer, optimizer_idx):
if self.assert_backward:
if self.trainer.precision == 16:
assert loss > 171 * 1000
else:
assert loss == 171.0
super().backward(loss, optimizer, optimizer_idx)
class DummyDataset(Dataset):
def __len__(self):
return 12
def __getitem__(self, idx):
return torch.tensor([0.5, 1.0, 2.0])