176 lines
5.8 KiB
Python
176 lines
5.8 KiB
Python
import csv
|
|
import os
|
|
from argparse import Namespace
|
|
from typing import Optional, Dict, Union, Any
|
|
from warnings import warn
|
|
|
|
import torch
|
|
from pkg_resources import parse_version
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from .base import LightningLoggerBase, rank_zero_only
|
|
|
|
|
|
class TensorBoardLogger(LightningLoggerBase):
|
|
r"""
|
|
|
|
Log to local file system in TensorBoard format
|
|
|
|
Implemented using :class:`torch.utils.tensorboard.SummaryWriter`. Logs are saved to
|
|
`os.path.join(save_dir, name, version)`
|
|
|
|
.. _tf-logger:
|
|
|
|
Example
|
|
------------------
|
|
|
|
.. code-block:: python
|
|
|
|
logger = TensorBoardLogger("tb_logs", name="my_model")
|
|
trainer = Trainer(logger=logger)
|
|
trainer.train(model)
|
|
|
|
Args:
|
|
save_dir (str): Save directory
|
|
name (str): Experiment name. Defaults to "default". If it is the empty string then no per-experiment
|
|
subdirectory is used.
|
|
version (int|str): Experiment version. If version is not specified the logger inspects the save
|
|
directory for existing versions, then automatically assigns the next available version.
|
|
If it is a string then it is used as the run-specific subdirectory name,
|
|
otherwise version_${version} is used.
|
|
\**kwargs (dict): Other arguments are passed directly to the :class:`SummaryWriter` constructor.
|
|
|
|
"""
|
|
NAME_CSV_TAGS = 'meta_tags.csv'
|
|
|
|
def __init__(
|
|
self, save_dir: str, name: Optional[str] = "default",
|
|
version: Optional[Union[int, str]] = None, **kwargs
|
|
):
|
|
super().__init__()
|
|
self.save_dir = save_dir
|
|
self._name = name
|
|
self._version = version
|
|
|
|
self._experiment = None
|
|
self.tags = {}
|
|
self.kwargs = kwargs
|
|
|
|
@property
|
|
def root_dir(self) -> str:
|
|
"""
|
|
Parent directory for all tensorboard checkpoint subdirectories.
|
|
If the experiment name parameter is None or the empty string, no experiment subdirectory is used
|
|
and checkpoint will be saved in save_dir/version_dir
|
|
"""
|
|
if self.name is None or len(self.name) == 0:
|
|
return self.save_dir
|
|
else:
|
|
return os.path.join(self.save_dir, self.name)
|
|
|
|
@property
|
|
def log_dir(self) -> str:
|
|
"""
|
|
The directory for this run's tensorboard checkpoint. By default, it is named 'version_${self.version}'
|
|
but it can be overridden by passing a string value for the constructor's version parameter
|
|
instead of None or an int
|
|
"""
|
|
# create a pseudo standard path ala test-tube
|
|
version = self.version if isinstance(self.version, str) else f"version_{self.version}"
|
|
log_dir = os.path.join(self.root_dir, version)
|
|
return log_dir
|
|
|
|
@property
|
|
def experiment(self) -> SummaryWriter:
|
|
r"""
|
|
|
|
Actual tensorboard object. To use tensorboard features do the following.
|
|
|
|
Example::
|
|
|
|
self.logger.experiment.some_tensorboard_function()
|
|
|
|
"""
|
|
if self._experiment is not None:
|
|
return self._experiment
|
|
|
|
os.makedirs(self.root_dir, exist_ok=True)
|
|
self._experiment = SummaryWriter(log_dir=self.log_dir, **self.kwargs)
|
|
return self._experiment
|
|
|
|
@rank_zero_only
|
|
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
|
|
params = self._convert_params(params)
|
|
|
|
if parse_version(torch.__version__) < parse_version("1.3.0"):
|
|
warn(
|
|
f"Hyperparameter logging is not available for Torch version {torch.__version__}."
|
|
" Skipping log_hyperparams. Upgrade to Torch 1.3.0 or above to enable"
|
|
" hyperparameter logging."
|
|
)
|
|
else:
|
|
from torch.utils.tensorboard.summary import hparams
|
|
exp, ssi, sei = hparams(params, {})
|
|
writer = self.experiment._get_file_writer()
|
|
writer.add_summary(exp)
|
|
writer.add_summary(ssi)
|
|
writer.add_summary(sei)
|
|
# some alternative should be added
|
|
self.tags.update(params)
|
|
|
|
@rank_zero_only
|
|
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
|
|
for k, v in metrics.items():
|
|
if isinstance(v, torch.Tensor):
|
|
v = v.item()
|
|
self.experiment.add_scalar(k, v, step)
|
|
|
|
@rank_zero_only
|
|
def save(self) -> None:
|
|
try:
|
|
self.experiment.flush()
|
|
except AttributeError:
|
|
# you are using PT version (<v1.2) which does not have implemented flush
|
|
self.experiment._get_file_writer().flush()
|
|
|
|
dir_path = self.log_dir
|
|
if not os.path.isdir(dir_path):
|
|
dir_path = self.save_dir
|
|
|
|
# prepare the file path
|
|
meta_tags_path = os.path.join(dir_path, self.NAME_CSV_TAGS)
|
|
|
|
# save the metatags file
|
|
with open(meta_tags_path, 'w', newline='') as csvfile:
|
|
fieldnames = ['key', 'value']
|
|
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
|
writer.writerow({'key': 'key', 'value': 'value'})
|
|
for k, v in self.tags.items():
|
|
writer.writerow({'key': k, 'value': v})
|
|
|
|
@rank_zero_only
|
|
def finalize(self, status: str) -> None:
|
|
self.save()
|
|
|
|
@property
|
|
def name(self) -> str:
|
|
return self._name
|
|
|
|
@property
|
|
def version(self) -> int:
|
|
if self._version is None:
|
|
self._version = self._get_next_version()
|
|
return self._version
|
|
|
|
def _get_next_version(self):
|
|
root_dir = os.path.join(self.save_dir, self.name)
|
|
existing_versions = []
|
|
for d in os.listdir(root_dir):
|
|
if os.path.isdir(os.path.join(root_dir, d)) and d.startswith("version_"):
|
|
existing_versions.append(int(d.split("_")[1]))
|
|
|
|
if len(existing_versions) == 0:
|
|
return 0
|
|
|
|
return max(existing_versions) + 1
|