109 lines
3.4 KiB
Python
109 lines
3.4 KiB
Python
from unittest.mock import MagicMock
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from pytorch_lightning import Trainer
|
|
from tests.base import EvalModelTemplate
|
|
|
|
|
|
@pytest.mark.parametrize('max_steps', [1, 2, 3])
|
|
def test_on_before_zero_grad_called(tmpdir, max_steps):
|
|
|
|
class CurrentTestModel(EvalModelTemplate):
|
|
on_before_zero_grad_called = 0
|
|
|
|
def on_before_zero_grad(self, optimizer):
|
|
self.on_before_zero_grad_called += 1
|
|
|
|
model = CurrentTestModel()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_steps=max_steps,
|
|
max_epochs=2,
|
|
num_sanity_val_steps=5,
|
|
)
|
|
assert 0 == model.on_before_zero_grad_called
|
|
trainer.fit(model)
|
|
assert max_steps == model.on_before_zero_grad_called
|
|
|
|
model.on_before_zero_grad_called = 0
|
|
trainer.test(model)
|
|
assert 0 == model.on_before_zero_grad_called
|
|
|
|
|
|
def test_training_epoch_end_metrics_collection(tmpdir):
|
|
""" Test that progress bar metrics also get collected at the end of an epoch. """
|
|
num_epochs = 3
|
|
|
|
class CurrentModel(EvalModelTemplate):
|
|
|
|
def training_step(self, *args, **kwargs):
|
|
output = super().training_step(*args, **kwargs)
|
|
output['progress_bar'].update({'step_metric': torch.tensor(-1)})
|
|
output['progress_bar'].update({'shared_metric': 100})
|
|
return output
|
|
|
|
def training_epoch_end(self, outputs):
|
|
epoch = self.current_epoch
|
|
# both scalar tensors and Python numbers are accepted
|
|
return {
|
|
'progress_bar': {
|
|
f'epoch_metric_{epoch}': torch.tensor(epoch), # add a new metric key every epoch
|
|
'shared_metric': 111,
|
|
}
|
|
}
|
|
|
|
model = CurrentModel()
|
|
trainer = Trainer(
|
|
max_epochs=num_epochs,
|
|
default_root_dir=tmpdir,
|
|
overfit_batches=2,
|
|
)
|
|
result = trainer.fit(model)
|
|
assert result == 1
|
|
metrics = trainer.progress_bar_dict
|
|
|
|
# metrics added in training step should be unchanged by epoch end method
|
|
assert metrics['step_metric'] == -1
|
|
# a metric shared in both methods gets overwritten by epoch_end
|
|
assert metrics['shared_metric'] == 111
|
|
# metrics are kept after each epoch
|
|
for i in range(num_epochs):
|
|
assert metrics[f'epoch_metric_{i}'] == i
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
def test_transfer_batch_hook():
|
|
|
|
class CustomBatch:
|
|
|
|
def __init__(self, data):
|
|
self.samples = data[0]
|
|
self.targets = data[1]
|
|
|
|
class CurrentTestModel(EvalModelTemplate):
|
|
|
|
hook_called = False
|
|
|
|
def transfer_batch_to_device(self, data, device):
|
|
self.hook_called = True
|
|
if isinstance(data, CustomBatch):
|
|
data.samples = data.samples.to(device)
|
|
data.targets = data.targets.to(device)
|
|
else:
|
|
data = super().transfer_batch_to_device(data, device)
|
|
return data
|
|
|
|
model = CurrentTestModel()
|
|
batch = CustomBatch((torch.zeros(5, 28), torch.ones(5, 1, dtype=torch.long)))
|
|
|
|
trainer = Trainer()
|
|
# running .fit() would require us to implement custom data loaders, we mock the model reference instead
|
|
trainer.get_model = MagicMock(return_value=model)
|
|
batch_gpu = trainer.transfer_batch_to_gpu(batch, 0)
|
|
expected = torch.device('cuda', 0)
|
|
assert model.hook_called
|
|
assert batch_gpu.samples.device == batch_gpu.targets.device == expected
|