513 lines
15 KiB
Python
513 lines
15 KiB
Python
import os
|
|
import platform
|
|
|
|
import pytest
|
|
import torch
|
|
from packaging.version import parse as version_parse
|
|
|
|
import tests.base.develop_pipelines as tpipes
|
|
import tests.base.develop_utils as tutils
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.callbacks import EarlyStopping
|
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
from pytorch_lightning.core.step_result import TrainResult
|
|
from tests.base import EvalModelTemplate
|
|
|
|
|
|
def test_cpu_slurm_save_load(tmpdir):
|
|
"""Verify model save/load/checkpoint on CPU."""
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
version = logger.version
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
logger=logger,
|
|
limit_train_batches=0.2,
|
|
limit_val_batches=0.2,
|
|
checkpoint_callback=ModelCheckpoint(tmpdir),
|
|
)
|
|
result = trainer.fit(model)
|
|
real_global_step = trainer.global_step
|
|
|
|
# traning complete
|
|
assert result == 1, 'cpu model failed to complete'
|
|
|
|
# predict with trained model before saving
|
|
# make a prediction
|
|
dataloaders = model.test_dataloader()
|
|
if not isinstance(dataloaders, list):
|
|
dataloaders = [dataloaders]
|
|
|
|
for dataloader in dataloaders:
|
|
for batch in dataloader:
|
|
break
|
|
|
|
x, y = batch
|
|
x = x.view(x.size(0), -1)
|
|
|
|
model.eval()
|
|
pred_before_saving = model(x)
|
|
|
|
# test HPC saving
|
|
# simulate snapshot on slurm
|
|
saved_filepath = trainer.hpc_save(trainer.weights_save_path, logger)
|
|
assert os.path.exists(saved_filepath)
|
|
|
|
# new logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir, version=version)
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
logger=logger,
|
|
checkpoint_callback=ModelCheckpoint(tmpdir),
|
|
)
|
|
model = EvalModelTemplate(**hparams)
|
|
|
|
# set the epoch start hook so we can predict before the model does the full training
|
|
def assert_pred_same():
|
|
assert trainer.global_step == real_global_step and trainer.global_step > 0
|
|
|
|
# predict with loaded model to make sure answers are the same
|
|
trainer.model.eval()
|
|
new_pred = trainer.model(x)
|
|
assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1
|
|
|
|
model.on_epoch_start = assert_pred_same
|
|
|
|
# by calling fit again, we trigger training, loading weights from the cluster
|
|
# and our hook to predict using current model before any more weight updates
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_early_stopping_cpu_model(tmpdir):
|
|
"""Test each of the trainer options."""
|
|
stopping = EarlyStopping(monitor='val_loss', min_delta=0.1)
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
early_stop_callback=stopping,
|
|
max_epochs=2,
|
|
gradient_clip_val=1.0,
|
|
overfit_batches=0.20,
|
|
track_grad_norm=2,
|
|
limit_train_batches=0.1,
|
|
limit_val_batches=0.1,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False)
|
|
|
|
# test freeze on cpu
|
|
model.freeze()
|
|
model.unfreeze()
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == "Windows",
|
|
reason="Distributed training is not supported on Windows")
|
|
@pytest.mark.skipif((platform.system() == "Darwin" and
|
|
version_parse(torch.__version__) < version_parse("1.3.0")),
|
|
reason="Distributed training is not supported on MacOS before Torch 1.3.0")
|
|
def test_multi_cpu_model_ddp(tmpdir):
|
|
"""Make sure DDP works."""
|
|
tutils.set_random_master_port()
|
|
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
gpus=None,
|
|
num_processes=2,
|
|
distributed_backend='ddp_cpu',
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False)
|
|
|
|
|
|
def test_lbfgs_cpu_model(tmpdir):
|
|
"""Test each of the trainer options."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
progress_bar_refresh_rate=0,
|
|
weights_summary='top',
|
|
limit_train_batches=0.2,
|
|
limit_val_batches=0.2,
|
|
)
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
hparams.update(optimizer_name='lbfgs',
|
|
learning_rate=0.004)
|
|
model = EvalModelTemplate(**hparams)
|
|
model.configure_optimizers = model.configure_optimizers__lbfgs
|
|
tpipes.run_model_test_without_loggers(trainer_options, model, min_acc=0.25)
|
|
|
|
|
|
def test_default_logger_callbacks_cpu_model(tmpdir):
|
|
"""Test each of the trainer options."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
gradient_clip_val=1.0,
|
|
overfit_batches=0.20,
|
|
progress_bar_refresh_rate=0,
|
|
limit_train_batches=0.01,
|
|
limit_val_batches=0.01,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tpipes.run_model_test_without_loggers(trainer_options, model)
|
|
|
|
# test freeze on cpu
|
|
model.freeze()
|
|
model.unfreeze()
|
|
|
|
|
|
def test_running_test_after_fitting(tmpdir):
|
|
"""Verify test() on fitted model."""
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# logger file to get weights
|
|
checkpoint = tutils.init_checkpoint_callback(logger)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=2,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
limit_test_batches=0.2,
|
|
checkpoint_callback=checkpoint,
|
|
logger=logger,
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
assert result == 1, 'training failed to complete'
|
|
|
|
trainer.test()
|
|
|
|
# test we have good test accuracy
|
|
tutils.assert_ok_model_acc(trainer, thr=0.5)
|
|
|
|
|
|
def test_running_test_no_val(tmpdir):
|
|
"""Verify `test()` works on a model with no `val_loader`."""
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# logger file to get weights
|
|
checkpoint = tutils.init_checkpoint_callback(logger)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
limit_test_batches=0.2,
|
|
checkpoint_callback=checkpoint,
|
|
logger=logger,
|
|
early_stop_callback=False,
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
assert result == 1, 'training failed to complete'
|
|
|
|
trainer.test()
|
|
|
|
# test we have good test accuracy
|
|
tutils.assert_ok_model_acc(trainer)
|
|
|
|
|
|
def test_simple_cpu(tmpdir):
|
|
"""Verify continue training session on CPU."""
|
|
model = EvalModelTemplate()
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_val_batches=0.1,
|
|
limit_train_batches=20,
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
# traning complete
|
|
assert result == 1, 'amp + ddp model failed to complete'
|
|
|
|
|
|
def test_cpu_model(tmpdir):
|
|
"""Make sure model trains on CPU."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.4
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False)
|
|
|
|
|
|
def test_all_features_cpu_model(tmpdir):
|
|
"""Test each of the trainer options."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
gradient_clip_val=1.0,
|
|
overfit_batches=0.20,
|
|
track_grad_norm=2,
|
|
progress_bar_refresh_rate=0,
|
|
accumulate_grad_batches=2,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.4
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False)
|
|
|
|
|
|
def test_tbptt_cpu_model(tmpdir):
|
|
"""Test truncated back propagation through time works."""
|
|
truncated_bptt_steps = 2
|
|
sequence_size = 30
|
|
batch_size = 30
|
|
|
|
x_seq = torch.rand(batch_size, sequence_size, 1)
|
|
y_seq_list = torch.rand(batch_size, sequence_size, 1).tolist()
|
|
|
|
class MockSeq2SeqDataset(torch.utils.data.Dataset):
|
|
def __getitem__(self, i):
|
|
return x_seq, y_seq_list
|
|
|
|
def __len__(self):
|
|
return 1
|
|
|
|
class BpttTestModel(EvalModelTemplate):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.test_hidden = None
|
|
|
|
def training_step(self, batch, batch_idx, hiddens):
|
|
assert hiddens == self.test_hidden, "Hidden state not persistent between tbptt steps"
|
|
self.test_hidden = torch.rand(1)
|
|
|
|
x_tensor, y_list = batch
|
|
assert x_tensor.shape[1] == truncated_bptt_steps, "tbptt split Tensor failed"
|
|
|
|
y_tensor = torch.tensor(y_list, dtype=x_tensor.dtype)
|
|
assert y_tensor.shape[1] == truncated_bptt_steps, "tbptt split list failed"
|
|
|
|
pred = self(x_tensor.view(batch_size, truncated_bptt_steps))
|
|
loss_val = torch.nn.functional.mse_loss(
|
|
pred, y_tensor.view(batch_size, truncated_bptt_steps))
|
|
return {
|
|
'loss': loss_val,
|
|
'hiddens': self.test_hidden,
|
|
}
|
|
|
|
def training_epoch_end(self, training_step_outputs):
|
|
training_step_outputs = training_step_outputs[0]
|
|
assert len(training_step_outputs) == (sequence_size / truncated_bptt_steps)
|
|
loss = torch.stack([x['loss'] for x in training_step_outputs]).mean()
|
|
return {'log': {'train_loss': loss}}
|
|
|
|
def train_dataloader(self):
|
|
return torch.utils.data.DataLoader(
|
|
dataset=MockSeq2SeqDataset(),
|
|
batch_size=batch_size,
|
|
shuffle=False,
|
|
sampler=None,
|
|
)
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
hparams.update(
|
|
batch_size=batch_size,
|
|
in_features=truncated_bptt_steps,
|
|
hidden_dim=truncated_bptt_steps,
|
|
out_features=truncated_bptt_steps
|
|
)
|
|
|
|
model = BpttTestModel(**hparams)
|
|
model.example_input_array = torch.randn(5, truncated_bptt_steps)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
truncated_bptt_steps=truncated_bptt_steps,
|
|
limit_val_batches=0,
|
|
weights_summary=None,
|
|
early_stop_callback=False,
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
assert result == 1, 'training failed to complete'
|
|
|
|
|
|
def test_tbptt_cpu_model_result(tmpdir):
|
|
"""Test truncated back propagation through time works."""
|
|
truncated_bptt_steps = 2
|
|
sequence_size = 30
|
|
batch_size = 30
|
|
|
|
x_seq = torch.rand(batch_size, sequence_size, 1)
|
|
y_seq_list = torch.rand(batch_size, sequence_size, 1).tolist()
|
|
|
|
class MockSeq2SeqDataset(torch.utils.data.Dataset):
|
|
def __getitem__(self, i):
|
|
return x_seq, y_seq_list
|
|
|
|
def __len__(self):
|
|
return 1
|
|
|
|
class BpttTestModel(EvalModelTemplate):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.test_hidden = None
|
|
|
|
def training_step(self, batch, batch_idx, hiddens):
|
|
assert hiddens == self.test_hidden, "Hidden state not persistent between tbptt steps"
|
|
self.test_hidden = torch.rand(1)
|
|
|
|
x_tensor, y_list = batch
|
|
assert x_tensor.shape[1] == truncated_bptt_steps, "tbptt split Tensor failed"
|
|
|
|
y_tensor = torch.tensor(y_list, dtype=x_tensor.dtype)
|
|
assert y_tensor.shape[1] == truncated_bptt_steps, "tbptt split list failed"
|
|
|
|
pred = self(x_tensor.view(batch_size, truncated_bptt_steps))
|
|
loss_val = torch.nn.functional.mse_loss(
|
|
pred, y_tensor.view(batch_size, truncated_bptt_steps))
|
|
|
|
result = TrainResult(loss_val, hiddens=self.test_hidden)
|
|
return result
|
|
|
|
def training_epoch_end(self, training_step_outputs):
|
|
result = training_step_outputs
|
|
assert isinstance(result, TrainResult)
|
|
assert result.minimize.size(1) == (sequence_size / truncated_bptt_steps)
|
|
|
|
result.minimize = result.minimize.mean()
|
|
return result
|
|
|
|
def train_dataloader(self):
|
|
return torch.utils.data.DataLoader(
|
|
dataset=MockSeq2SeqDataset(),
|
|
batch_size=batch_size,
|
|
shuffle=False,
|
|
sampler=None,
|
|
)
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
hparams.update(
|
|
batch_size=batch_size,
|
|
in_features=truncated_bptt_steps,
|
|
hidden_dim=truncated_bptt_steps,
|
|
out_features=truncated_bptt_steps
|
|
)
|
|
|
|
model = BpttTestModel(**hparams)
|
|
model.example_input_array = torch.randn(5, truncated_bptt_steps)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
truncated_bptt_steps=truncated_bptt_steps,
|
|
limit_val_batches=0,
|
|
weights_summary=None,
|
|
early_stop_callback=False,
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
assert result == 1, 'training failed to complete'
|
|
|
|
|
|
def test_tbptt_cpu_model_result_auto_reduce(tmpdir):
|
|
"""Test truncated back propagation through time works."""
|
|
truncated_bptt_steps = 2
|
|
sequence_size = 30
|
|
batch_size = 30
|
|
|
|
x_seq = torch.rand(batch_size, sequence_size, 1)
|
|
y_seq_list = torch.rand(batch_size, sequence_size, 1).tolist()
|
|
|
|
class MockSeq2SeqDataset(torch.utils.data.Dataset):
|
|
def __getitem__(self, i):
|
|
return x_seq, y_seq_list
|
|
|
|
def __len__(self):
|
|
return 1
|
|
|
|
class BpttTestModel(EvalModelTemplate):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.test_hidden = None
|
|
|
|
def training_step(self, batch, batch_idx, hiddens):
|
|
assert hiddens == self.test_hidden, "Hidden state not persistent between tbptt steps"
|
|
self.test_hidden = torch.rand(1)
|
|
|
|
x_tensor, y_list = batch
|
|
assert x_tensor.shape[1] == truncated_bptt_steps, "tbptt split Tensor failed"
|
|
|
|
y_tensor = torch.tensor(y_list, dtype=x_tensor.dtype)
|
|
assert y_tensor.shape[1] == truncated_bptt_steps, "tbptt split list failed"
|
|
|
|
pred = self(x_tensor.view(batch_size, truncated_bptt_steps))
|
|
loss_val = torch.nn.functional.mse_loss(
|
|
pred, y_tensor.view(batch_size, truncated_bptt_steps))
|
|
|
|
result = TrainResult(loss_val, hiddens=self.test_hidden)
|
|
return result
|
|
|
|
def train_dataloader(self):
|
|
return torch.utils.data.DataLoader(
|
|
dataset=MockSeq2SeqDataset(),
|
|
batch_size=batch_size,
|
|
shuffle=False,
|
|
sampler=None,
|
|
)
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
hparams.update(
|
|
batch_size=batch_size,
|
|
in_features=truncated_bptt_steps,
|
|
hidden_dim=truncated_bptt_steps,
|
|
out_features=truncated_bptt_steps
|
|
)
|
|
|
|
model = BpttTestModel(**hparams)
|
|
model.example_input_array = torch.randn(5, truncated_bptt_steps)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
truncated_bptt_steps=truncated_bptt_steps,
|
|
limit_val_batches=0,
|
|
weights_summary=None,
|
|
early_stop_callback=False,
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
assert result == 1, 'training failed to complete'
|