lightning/tests/metrics/test_converters.py

244 lines
6.8 KiB
Python

import sys
import numpy as np
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import tests.base.develop_utils as tutils
from pytorch_lightning.metrics.converters import (
_apply_to_inputs,
_apply_to_outputs,
_convert_to_tensor,
_convert_to_numpy,
_numpy_metric_conversion,
_tensor_metric_conversion,
_sync_ddp_if_available,
tensor_metric,
numpy_metric
)
def test_apply_to_inputs():
def apply_fn(inputs, factor):
if isinstance(inputs, (float, int)):
return inputs * factor
elif isinstance(inputs, dict):
return {k: apply_fn(v, factor) for k, v in inputs.items()}
elif isinstance(inputs, (tuple, list)):
return [apply_fn(x, factor) for x in inputs]
@_apply_to_inputs(apply_fn, factor=2.)
def test_fn(*args, **kwargs):
return args, kwargs
for args in [[], [1., 2.]]:
for kwargs in [{}, {'a': 1., 'b': 2.}]:
result_args, result_kwargs = test_fn(*args, **kwargs)
assert isinstance(result_args, (list, tuple))
assert isinstance(result_kwargs, dict)
assert len(result_args) == len(args)
assert len(result_kwargs) == len(kwargs)
assert all([k in result_kwargs for k in kwargs.keys()])
for arg, result_arg in zip(args, result_args):
assert arg * 2. == result_arg
for key in kwargs.keys():
arg = kwargs[key]
result_arg = result_kwargs[key]
assert arg * 2. == result_arg
def test_apply_to_outputs():
def apply_fn(inputs, additional_str):
return str(inputs) + additional_str
@_apply_to_outputs(apply_fn, additional_str='_str')
def test_fn(*args, **kwargs):
return 'dummy'
assert test_fn() == 'dummy_str'
def test_convert_to_tensor():
for test_item in [1., np.array([1.])]:
result_tensor = _convert_to_tensor(test_item)
assert isinstance(result_tensor, torch.Tensor)
assert result_tensor.item() == 1.
def test_convert_to_numpy():
for test_item in [1., torch.tensor([1.])]:
result = _convert_to_numpy(test_item)
assert isinstance(result, np.ndarray)
assert result.item() == 1.
def test_numpy_metric_conversion():
@_numpy_metric_conversion
def numpy_test_metric(*args, **kwargs):
for arg in args:
assert isinstance(arg, np.ndarray)
for v in kwargs.values():
assert isinstance(v, np.ndarray)
return 5.
result = numpy_test_metric(torch.tensor([1.]), dummy_kwarg=2.)
assert isinstance(result, torch.Tensor)
assert result.item() == 5.
def test_tensor_metric_conversion():
@_tensor_metric_conversion
def tensor_test_metric(*args, **kwargs):
for arg in args:
assert isinstance(arg, torch.Tensor)
for v in kwargs.values():
assert isinstance(v, torch.Tensor)
return 5.
result = tensor_test_metric(np.array([1.]), dummy_kwarg=2.)
assert isinstance(result, torch.Tensor)
assert result.item() == 5.
def _setup_ddp(rank, worldsize):
import os
os.environ['MASTER_ADDR'] = 'localhost'
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=worldsize)
def _ddp_test_fn(rank, worldsize, add_offset: bool, reduction_mean=False):
_setup_ddp(rank, worldsize)
if add_offset:
tensor = torch.tensor([float(rank)])
else:
tensor = torch.tensor([1.], )
if reduction_mean:
reduced_tensor = _sync_ddp_if_available(tensor, reduce_op='avg')
manual_reduction = sum([i for i in range(dist.get_world_size())]) / dist.get_world_size()
assert reduced_tensor.item() == manual_reduction
else:
reduced_tensor = _sync_ddp_if_available(tensor)
assert reduced_tensor.item() == dist.get_world_size(), \
'Sync-Reduce does not work properly with DDP and Tensors'
@pytest.mark.skipif(sys.platform == "win32" , reason="DDP not available on windows")
def test_sync_reduce_ddp():
"""Make sure sync-reduce works with DDP"""
tutils.reset_seed()
tutils.set_random_master_port()
worldsize = 2
mp.spawn(_ddp_test_fn, args=(worldsize, False), nprocs=worldsize)
@pytest.mark.skipif(sys.platform == "win32" , reason="DDP not available on windows")
def test_sync_reduce_ddp_mean():
"""Make sure sync-reduce works with DDP"""
tutils.reset_seed()
tutils.set_random_master_port()
worldsize = 2
mp.spawn(_ddp_test_fn, args=(worldsize, True, True), nprocs=worldsize)
def test_sync_reduce_simple():
"""Make sure sync-reduce works without DDP"""
tensor = torch.tensor([1.], device='cpu')
reduced_tensor = _sync_ddp_if_available(tensor)
assert torch.allclose(tensor, reduced_tensor), \
'Sync-Reduce does not work properly without DDP and Tensors'
def _test_tensor_metric(is_ddp: bool):
@tensor_metric()
def tensor_test_metric(*args, **kwargs):
for arg in args:
assert isinstance(arg, torch.Tensor)
for v in kwargs.values():
assert isinstance(v, torch.Tensor)
return 5.
if is_ddp:
factor = dist.get_world_size()
else:
factor = 1.
result = tensor_test_metric(np.array([1.]), dummy_kwarg=2.)
assert isinstance(result, torch.Tensor)
assert result.item() == 5. * factor
def _ddp_test_tensor_metric(rank, worldsize):
_setup_ddp(rank, worldsize)
_test_tensor_metric(True)
@pytest.mark.skipif(sys.platform == "win32" , reason="DDP not available on windows")
def test_tensor_metric_ddp():
tutils.reset_seed()
tutils.set_random_master_port()
world_size = 2
mp.spawn(_ddp_test_tensor_metric, args=(world_size,), nprocs=world_size)
# dist.destroy_process_group()
def test_tensor_metric_simple():
_test_tensor_metric(False)
def _test_numpy_metric(is_ddp: bool):
@numpy_metric()
def numpy_test_metric(*args, **kwargs):
for arg in args:
assert isinstance(arg, np.ndarray)
for v in kwargs.values():
assert isinstance(v, np.ndarray)
return 5.
if is_ddp:
factor = dist.get_world_size()
else:
factor = 1.
result = numpy_test_metric(torch.tensor([1.]), dummy_kwarg=2.)
assert isinstance(result, torch.Tensor)
assert result.item() == 5. * factor
def _ddp_test_numpy_metric(rank, worldsize):
_setup_ddp(rank, worldsize)
_test_numpy_metric(True)
@pytest.mark.skipif(sys.platform == "win32" , reason="DDP not available on windows")
def test_numpy_metric_ddp():
tutils.reset_seed()
tutils.set_random_master_port()
world_size = 2
mp.spawn(_ddp_test_numpy_metric, args=(world_size,), nprocs=world_size)
# dist.destroy_process_group()
def test_numpy_metric_simple():
_test_numpy_metric(False)