202 lines
5.5 KiB
Python
202 lines
5.5 KiB
Python
import pickle
|
|
from typing import Optional
|
|
from unittest.mock import MagicMock
|
|
|
|
import numpy as np
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.loggers import LightningLoggerBase, LoggerCollection
|
|
from pytorch_lightning.utilities import rank_zero_only
|
|
from tests.base import EvalModelTemplate
|
|
|
|
|
|
def test_logger_collection():
|
|
mock1 = MagicMock()
|
|
mock2 = MagicMock()
|
|
|
|
logger = LoggerCollection([mock1, mock2])
|
|
|
|
assert logger[0] == mock1
|
|
assert logger[1] == mock2
|
|
|
|
assert logger.experiment[0] == mock1.experiment
|
|
assert logger.experiment[1] == mock2.experiment
|
|
|
|
assert logger.save_dir is None
|
|
|
|
logger.update_agg_funcs({'test': np.mean}, np.sum)
|
|
mock1.update_agg_funcs.assert_called_once_with({'test': np.mean}, np.sum)
|
|
mock2.update_agg_funcs.assert_called_once_with({'test': np.mean}, np.sum)
|
|
|
|
logger.agg_and_log_metrics({'test': 2.0}, 4)
|
|
mock1.agg_and_log_metrics.assert_called_once_with({'test': 2.0}, 4)
|
|
mock2.agg_and_log_metrics.assert_called_once_with({'test': 2.0}, 4)
|
|
|
|
logger.close()
|
|
mock1.close.assert_called_once()
|
|
mock2.close.assert_called_once()
|
|
|
|
|
|
class CustomLogger(LightningLoggerBase):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.hparams_logged = None
|
|
self.metrics_logged = None
|
|
self.finalized = False
|
|
|
|
@property
|
|
def experiment(self):
|
|
return 'test'
|
|
|
|
@rank_zero_only
|
|
def log_hyperparams(self, params):
|
|
self.hparams_logged = params
|
|
|
|
@rank_zero_only
|
|
def log_metrics(self, metrics, step):
|
|
self.metrics_logged = metrics
|
|
|
|
@rank_zero_only
|
|
def finalize(self, status):
|
|
self.finalized_status = status
|
|
|
|
@property
|
|
def save_dir(self) -> Optional[str]:
|
|
"""
|
|
Return the root directory where experiment logs get saved, or `None` if the logger does not
|
|
save data locally.
|
|
"""
|
|
return None
|
|
|
|
@property
|
|
def name(self):
|
|
return "name"
|
|
|
|
@property
|
|
def version(self):
|
|
return "1"
|
|
|
|
|
|
def test_custom_logger(tmpdir):
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
|
|
logger = CustomLogger()
|
|
|
|
trainer = Trainer(
|
|
max_epochs=1,
|
|
limit_train_batches=0.05,
|
|
logger=logger,
|
|
default_root_dir=tmpdir,
|
|
)
|
|
result = trainer.fit(model)
|
|
assert result == 1, "Training failed"
|
|
assert logger.hparams_logged == hparams
|
|
assert logger.metrics_logged != {}
|
|
assert logger.finalized_status == "success"
|
|
|
|
|
|
def test_multiple_loggers(tmpdir):
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
|
|
logger1 = CustomLogger()
|
|
logger2 = CustomLogger()
|
|
|
|
trainer = Trainer(
|
|
max_epochs=1,
|
|
limit_train_batches=0.05,
|
|
logger=[logger1, logger2],
|
|
default_root_dir=tmpdir,
|
|
)
|
|
result = trainer.fit(model)
|
|
assert result == 1, "Training failed"
|
|
|
|
assert logger1.hparams_logged == hparams
|
|
assert logger1.metrics_logged != {}
|
|
assert logger1.finalized_status == "success"
|
|
|
|
assert logger2.hparams_logged == hparams
|
|
assert logger2.metrics_logged != {}
|
|
assert logger2.finalized_status == "success"
|
|
|
|
|
|
def test_multiple_loggers_pickle(tmpdir):
|
|
"""Verify that pickling trainer with multiple loggers works."""
|
|
|
|
logger1 = CustomLogger()
|
|
logger2 = CustomLogger()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
logger=[logger1, logger2],
|
|
)
|
|
pkl_bytes = pickle.dumps(trainer)
|
|
trainer2 = pickle.loads(pkl_bytes)
|
|
trainer2.logger.log_metrics({"acc": 1.0}, 0)
|
|
|
|
assert logger1.metrics_logged != {}
|
|
assert logger2.metrics_logged != {}
|
|
|
|
|
|
def test_adding_step_key(tmpdir):
|
|
logged_step = 0
|
|
|
|
def _validation_epoch_end(outputs):
|
|
nonlocal logged_step
|
|
logged_step += 1
|
|
return {"log": {"step": logged_step, "val_acc": logged_step / 10}}
|
|
|
|
def _training_epoch_end(outputs):
|
|
nonlocal logged_step
|
|
logged_step += 1
|
|
return {"log": {"step": logged_step, "train_acc": logged_step / 10}}
|
|
|
|
def _log_metrics_decorator(log_metrics_fn):
|
|
def decorated(metrics, step):
|
|
if "val_acc" in metrics:
|
|
assert step == logged_step
|
|
return log_metrics_fn(metrics, step)
|
|
|
|
return decorated
|
|
|
|
model = EvalModelTemplate()
|
|
model.validation_epoch_end = _validation_epoch_end
|
|
model.training_epoch_end = _training_epoch_end
|
|
trainer = Trainer(
|
|
max_epochs=3,
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=0.1,
|
|
limit_val_batches=0.1,
|
|
num_sanity_val_steps=0,
|
|
)
|
|
trainer.logger.log_metrics = _log_metrics_decorator(
|
|
trainer.logger.log_metrics)
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_with_accumulate_grad_batches():
|
|
"""Checks if the logging is performed once for `accumulate_grad_batches` steps."""
|
|
|
|
class StoreHistoryLogger(CustomLogger):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.history = {}
|
|
|
|
@rank_zero_only
|
|
def log_metrics(self, metrics, step):
|
|
if step not in self.history:
|
|
self.history[step] = {}
|
|
self.history[step].update(metrics)
|
|
|
|
logger = StoreHistoryLogger()
|
|
|
|
np.random.seed(42)
|
|
for i, loss in enumerate(np.random.random(10)):
|
|
logger.agg_and_log_metrics({'loss': loss}, step=int(i / 5))
|
|
|
|
assert logger.history == {0: {'loss': 0.5623850983416314}}
|
|
logger.close()
|
|
assert logger.history == {0: {'loss': 0.5623850983416314}, 1: {'loss': 0.4778883735637184}}
|