lightning/tests/base/model_test_epoch_ends.py

76 lines
2.5 KiB
Python

from abc import ABC
import torch
class TestEpochEndVariations(ABC):
def test_epoch_end(self, outputs):
"""
Called at the end of test epoch to aggregate outputs
:param outputs: list of individual outputs of each validation step
:return:
"""
# if returned a scalar from test_step, outputs is a list of tensor scalars
# we return just the average in this case (if we want)
# return torch.stack(outputs).mean()
test_loss_mean = 0
test_acc_mean = 0
for output in outputs:
test_loss = self.get_output_metric(output, 'test_loss')
# reduce manually when using dp
if self.trainer.use_dp:
test_loss = torch.mean(test_loss)
test_loss_mean += test_loss
# reduce manually when using dp
test_acc = self.get_output_metric(output, 'test_acc')
if self.trainer.use_dp:
test_acc = torch.mean(test_acc)
test_acc_mean += test_acc
test_loss_mean /= len(outputs)
test_acc_mean /= len(outputs)
metrics_dict = {'test_loss': test_loss_mean, 'test_acc': test_acc_mean}
result = {'progress_bar': metrics_dict, 'log': metrics_dict}
return result
def test_epoch_end__multiple_dataloaders(self, outputs):
"""
Called at the end of test epoch to aggregate outputs
:param outputs: list of individual outputs of each validation step
:return:
"""
# if returned a scalar from test_step, outputs is a list of tensor scalars
# we return just the average in this case (if we want)
# return torch.stack(outputs).mean()
test_loss_mean = 0
test_acc_mean = 0
i = 0
for dl_output in outputs:
for output in dl_output:
test_loss = output['test_loss']
# reduce manually when using dp
if self.trainer.use_dp:
test_loss = torch.mean(test_loss)
test_loss_mean += test_loss
# reduce manually when using dp
test_acc = output['test_acc']
if self.trainer.use_dp:
test_acc = torch.mean(test_acc)
test_acc_mean += test_acc
i += 1
test_loss_mean /= i
test_acc_mean /= i
tqdm_dict = {'test_loss': test_loss_mean, 'test_acc': test_acc_mean}
result = {'progress_bar': tqdm_dict}
return result