lightning/tests/base/datamodules.py

85 lines
3.0 KiB
Python

import os
from torch.utils.data import random_split, DataLoader
from pytorch_lightning.core.datamodule import LightningDataModule
from tests.base.datasets import TrialMNIST, MNIST
from torch.utils.data.distributed import DistributedSampler
class TrialMNISTDataModule(LightningDataModule):
def __init__(self, data_dir: str = './'):
super().__init__()
self.data_dir = data_dir
self.non_picklable = None
def prepare_data(self):
TrialMNIST(self.data_dir, train=True, download=True)
TrialMNIST(self.data_dir, train=False, download=True)
def setup(self, stage: str = None):
if stage == 'fit' or stage is None:
mnist_full = TrialMNIST(root=self.data_dir, train=True, num_samples=64, download=True)
self.mnist_train, self.mnist_val = random_split(mnist_full, [128, 64])
self.dims = self.mnist_train[0][0].shape
if stage == 'test' or stage is None:
self.mnist_test = TrialMNIST(root=self.data_dir, train=False, num_samples=64, download=True)
self.dims = getattr(self, 'dims', self.mnist_test[0][0].shape)
self.non_picklable = lambda x: x**2
def train_dataloader(self):
return DataLoader(self.mnist_train, batch_size=32)
def val_dataloader(self):
return DataLoader(self.mnist_val, batch_size=32)
def test_dataloader(self):
return DataLoader(self.mnist_test, batch_size=32)
class MNISTDataModule(LightningDataModule):
def __init__(
self, data_dir: str = './', batch_size: int = 32, dist_sampler: bool = False
) -> None:
super().__init__()
self.dist_sampler = dist_sampler
self.data_dir = data_dir
self.batch_size = batch_size
# self.dims is returned when you call dm.size()
# Setting default dims here because we know them.
# Could optionally be assigned dynamically in dm.setup()
self.dims = (1, 28, 28)
def prepare_data(self):
# download only
MNIST(self.data_dir, train=True, download=True, normalize=(0.1307, 0.3081))
MNIST(self.data_dir, train=False, download=True, normalize=(0.1307, 0.3081))
def setup(self, stage: str = None):
# Assign train/val datasets for use in dataloaders
# TODO: need to split using random_split once updated to torch >= 1.6
if stage == 'fit' or stage is None:
self.mnist_train = MNIST(self.data_dir, train=True, normalize=(0.1307, 0.3081))
# Assign test dataset for use in dataloader(s)
if stage == 'test' or stage is None:
self.mnist_test = MNIST(self.data_dir, train=False, normalize=(0.1307, 0.3081))
def train_dataloader(self):
dist_sampler = None
if self.dist_sampler:
dist_sampler = DistributedSampler(self.mnist_train, shuffle=False)
return DataLoader(
self.mnist_train, batch_size=self.batch_size, sampler=dist_sampler, shuffle=False
)
def test_dataloader(self):
return DataLoader(self.mnist_test, batch_size=self.batch_size, shuffle=False)