322 lines
10 KiB
Python
322 lines
10 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
import os
|
|
import warnings
|
|
from functools import partial, wraps
|
|
from typing import Any, Optional, Union
|
|
|
|
import torch
|
|
from torch.nn.parallel.distributed import DistributedDataParallel
|
|
|
|
from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_8, _TORCH_GREATER_EQUAL_1_9, _TPU_AVAILABLE
|
|
|
|
if _TPU_AVAILABLE:
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
if torch.distributed.is_available():
|
|
from torch.distributed import group, ReduceOp
|
|
|
|
else:
|
|
|
|
class ReduceOp:
|
|
SUM = None
|
|
|
|
class group:
|
|
WORLD = None
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def rank_zero_only(fn):
|
|
|
|
@wraps(fn)
|
|
def wrapped_fn(*args, **kwargs):
|
|
if rank_zero_only.rank == 0:
|
|
return fn(*args, **kwargs)
|
|
|
|
return wrapped_fn
|
|
|
|
|
|
# TODO: this should be part of the cluster environment
|
|
def _get_rank() -> int:
|
|
rank_keys = ('RANK', 'SLURM_PROCID', 'LOCAL_RANK')
|
|
for key in rank_keys:
|
|
rank = os.environ.get(key)
|
|
if rank is not None:
|
|
return int(rank)
|
|
return 0
|
|
|
|
|
|
# add the attribute to the function but don't overwrite in case Trainer has already set it
|
|
rank_zero_only.rank = getattr(rank_zero_only, 'rank', _get_rank())
|
|
|
|
|
|
def _warn(*args, **kwargs):
|
|
warnings.warn(*args, **kwargs)
|
|
|
|
|
|
def _info(*args, **kwargs):
|
|
log.info(*args, **kwargs)
|
|
|
|
|
|
def _debug(*args, **kwargs):
|
|
log.debug(*args, **kwargs)
|
|
|
|
|
|
rank_zero_debug = rank_zero_only(_debug)
|
|
rank_zero_info = rank_zero_only(_info)
|
|
rank_zero_warn = rank_zero_only(_warn)
|
|
rank_zero_deprecation = partial(rank_zero_warn, category=DeprecationWarning)
|
|
|
|
|
|
def gather_all_tensors(result: Union[torch.Tensor], group: Optional[Any] = None):
|
|
"""
|
|
Function to gather all tensors from several ddp processes onto a list that
|
|
is broadcasted to all processes
|
|
|
|
Args:
|
|
result: the value to sync
|
|
group: the process group to gather results from. Defaults to all processes (world)
|
|
|
|
Return:
|
|
gathered_result: list with size equal to the process group where
|
|
gathered_result[i] corresponds to result tensor from process i
|
|
"""
|
|
if group is None:
|
|
group = torch.distributed.group.WORLD
|
|
|
|
# convert tensors to contiguous format
|
|
result = result.contiguous()
|
|
|
|
world_size = torch.distributed.get_world_size(group)
|
|
|
|
gathered_result = [torch.zeros_like(result) for _ in range(world_size)]
|
|
|
|
# sync and broadcast all
|
|
torch.distributed.barrier(group=group)
|
|
torch.distributed.all_gather(gathered_result, result, group)
|
|
|
|
return gathered_result
|
|
|
|
|
|
def sync_ddp_if_available(
|
|
result: Union[torch.Tensor],
|
|
group: Optional[Any] = None,
|
|
reduce_op: Optional[Union[ReduceOp, str]] = None
|
|
) -> torch.Tensor:
|
|
"""
|
|
Function to reduce a tensor across worker processes during distributed training
|
|
Args:
|
|
result: the value to sync and reduce (typically tensor or number)
|
|
group: the process group to gather results from. Defaults to all processes (world)
|
|
reduce_op: the reduction operation. Defaults to sum.
|
|
Can also be a string of 'avg', 'mean' to calculate the mean during reduction.
|
|
|
|
Return:
|
|
reduced value
|
|
"""
|
|
if torch.distributed.is_available() and torch.distributed.is_initialized() or tpu_distributed():
|
|
return sync_ddp(result, group=group, reduce_op=reduce_op)
|
|
return result
|
|
|
|
|
|
def sync_ddp(
|
|
result: Union[torch.Tensor],
|
|
group: Optional[Any] = None,
|
|
reduce_op: Optional[Union[ReduceOp, str]] = None
|
|
) -> torch.Tensor:
|
|
"""
|
|
Function to reduce the tensors from several ddp processes to one master process
|
|
|
|
Args:
|
|
result: the value to sync and reduce (typically tensor or number)
|
|
group: the process group to gather results from. Defaults to all processes (world)
|
|
reduce_op: the reduction operation. Defaults to sum.
|
|
Can also be a string of 'avg', 'mean' to calculate the mean during reduction.
|
|
|
|
Return:
|
|
reduced value
|
|
"""
|
|
divide_by_world_size = False
|
|
|
|
if group is None:
|
|
group = torch.distributed.group.WORLD
|
|
|
|
op = reduce_op if isinstance(reduce_op, ReduceOp) else ReduceOp.SUM
|
|
|
|
if isinstance(reduce_op, str) and reduce_op.lower() in ("avg", "mean"):
|
|
divide_by_world_size = True
|
|
|
|
# sync all processes before reduction
|
|
torch.distributed.barrier(group=group)
|
|
torch.distributed.all_reduce(result, op=op, group=group, async_op=False)
|
|
|
|
if divide_by_world_size:
|
|
result = result / torch.distributed.get_world_size(group)
|
|
|
|
return result
|
|
|
|
|
|
class AllGatherGrad(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, tensor, group=group.WORLD):
|
|
ctx.group = group
|
|
|
|
gathered_tensor = [torch.zeros_like(tensor) for _ in range(torch.distributed.get_world_size())]
|
|
|
|
torch.distributed.all_gather(gathered_tensor, tensor, group=group)
|
|
gathered_tensor = torch.stack(gathered_tensor, dim=0)
|
|
|
|
return gathered_tensor
|
|
|
|
@staticmethod
|
|
def backward(ctx, *grad_output):
|
|
grad_output = torch.cat(grad_output)
|
|
|
|
torch.distributed.all_reduce(grad_output, op=torch.distributed.ReduceOp.SUM, async_op=False, group=ctx.group)
|
|
|
|
return grad_output[torch.distributed.get_rank()], None
|
|
|
|
|
|
def all_gather_ddp_if_available(
|
|
tensor: Union[torch.Tensor], group: Optional[Any] = None, sync_grads: bool = False
|
|
) -> torch.Tensor:
|
|
"""
|
|
Function to gather a tensor from several distributed processes
|
|
|
|
Args:
|
|
tensor: tensor of shape (batch, ...)
|
|
group: the process group to gather results from. Defaults to all processes (world)
|
|
sync_grads: flag that allows users to synchronize gradients for all_gather op
|
|
|
|
Return:
|
|
A tensor of shape (world_size, batch, ...)
|
|
"""
|
|
group = group if group is not None else torch.distributed.group.WORLD
|
|
if torch.distributed.is_available() and torch.distributed.is_initialized():
|
|
if sync_grads:
|
|
return AllGatherGrad.apply(tensor, group)
|
|
else:
|
|
with torch.no_grad():
|
|
return AllGatherGrad.apply(tensor, group)
|
|
return tensor
|
|
|
|
|
|
def register_ddp_comm_hook(
|
|
model: DistributedDataParallel,
|
|
ddp_comm_state: Optional[object] = None,
|
|
ddp_comm_hook: Optional[callable] = None,
|
|
ddp_comm_wrapper: Optional[callable] = None,
|
|
) -> None:
|
|
"""
|
|
Function to register communication hook for DDP model
|
|
https://pytorch.org/docs/master/ddp_comm_hooks.html
|
|
|
|
Args:
|
|
model:
|
|
DDP model
|
|
ddp_comm_state:
|
|
state is passed to the hook and can be used to maintain
|
|
and update any state information that users would like to
|
|
maintain as part of the training process. Examples: error
|
|
feedback in gradient compression, peers to communicate with
|
|
next in GossipGrad etc.
|
|
ddp_comm_hook:
|
|
hook(state: object, bucket: dist._GradBucket) -> torch.futures.Future
|
|
|
|
This callable function is called once the bucket is ready. The
|
|
hook can perform whatever processing is needed and return
|
|
a Future indicating completion of any async work (ex: allreduce).
|
|
If the hook doesn't perform any communication, it can also
|
|
just return a completed Future. The Future should hold the
|
|
new value of grad bucket's tensors. Once a bucket is ready,
|
|
c10d reducer would call this hook and use the tensors returned
|
|
by the Future and copy grads to individual parameters.
|
|
ddp_comm_wrapper:
|
|
communication hook wraper to support a communication hook such
|
|
as FP16 compression as wrapper, which could be combined with
|
|
ddp_comm_hook
|
|
|
|
.. warning ::
|
|
DDP communication hook needs pytorch version at least 1.8.0
|
|
|
|
.. warning ::
|
|
DDP communication wrapper needs pytorch version at least 1.9.0
|
|
|
|
Example:
|
|
|
|
from torch.distributed.algorithms.ddp_comm_hooks import (
|
|
default_hooks as default,
|
|
powerSGD_hook as powerSGD,
|
|
)
|
|
|
|
# fp16_compress_hook for compress gradients
|
|
register_ddp_comm_hook(
|
|
model=ddp_model,
|
|
ddp_comm_hook=default.fp16_compress_hook,
|
|
)
|
|
|
|
# powerSGD_hook
|
|
register_ddp_comm_hook(
|
|
model=ddp_model,
|
|
ddp_comm_state=powerSGD.PowerSGDState(
|
|
process_group=None,
|
|
matrix_approximation_rank=1,
|
|
start_powerSGD_iter=5000,
|
|
),
|
|
ddp_comm_hook=powerSGD.powerSGD_hook,
|
|
)
|
|
|
|
# fp16_compress_wrapper combined with other communication hook
|
|
register_ddp_comm_hook(
|
|
model=ddp_model,
|
|
ddp_comm_state=powerSGD.PowerSGDState(
|
|
process_group=None,
|
|
matrix_approximation_rank=1,
|
|
start_powerSGD_iter=5000,
|
|
),
|
|
ddp_comm_hook=powerSGD.powerSGD_hook,
|
|
ddp_comm_wrapper=default.fp16_compress_wrapper,
|
|
)
|
|
"""
|
|
if not _TORCH_GREATER_EQUAL_1_8:
|
|
rank_zero_warn("Not registering DDP comm hook. To use communication hooks, please use pytorch>=1.8.0.")
|
|
return
|
|
if ddp_comm_hook is None:
|
|
return
|
|
if ddp_comm_wrapper is not None:
|
|
if not _TORCH_GREATER_EQUAL_1_9:
|
|
rank_zero_warn("Not applying DDP comm wrapper. To use communication wrapper, please use pytorch>=1.9.0.")
|
|
else:
|
|
rank_zero_info(
|
|
f"DDP comm wrapper is provided, apply {ddp_comm_wrapper.__qualname__}({ddp_comm_hook.__qualname__})."
|
|
)
|
|
ddp_comm_hook = ddp_comm_wrapper(ddp_comm_hook)
|
|
|
|
rank_zero_debug(f"Registering DDP comm hook: {ddp_comm_hook.__qualname__}.")
|
|
model.register_comm_hook(
|
|
state=ddp_comm_state,
|
|
hook=ddp_comm_hook,
|
|
)
|
|
|
|
|
|
def tpu_distributed() -> bool:
|
|
if _TPU_AVAILABLE:
|
|
return xm.xrt_world_size() > 1
|
|
return False
|