lightning/pytorch_lightning/plugins/native_amp.py

80 lines
2.7 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union
import torch
from torch.optim import Optimizer
from pytorch_lightning.plugins.precision_plugin import PrecisionPlugin
class NativeAMPPlugin(PrecisionPlugin):
def __init__(self, trainer=None):
"""
Integrates native amp into Lightning's internals.
"""
self.trainer = trainer
def connect(self, model, optimizers):
return model, optimizers
def training_step(self, fx, args):
with torch.cuda.amp.autocast():
output = fx(*args)
return output
def backward(self, closure_loss, optimizer, opt_idx, *args, **kwargs):
closure_loss = self.trainer.scaler.scale(closure_loss)
automatic_optimization = self.trainer.train_loop.automatic_optimization
# do backward pass
if automatic_optimization:
model = self.trainer.get_model()
model.backward(closure_loss, optimizer, opt_idx)
else:
closure_loss.backward(*args, **kwargs)
# once backward has been applied, release graph
closure_loss = closure_loss.detach()
# unscale gradient to allow analyze within `on_after_backward`
if not self.trainer.train_loop.should_accumulate() and automatic_optimization:
self.trainer.scaler.unscale_(optimizer)
return closure_loss
def clip_gradients(self, grad_clip_val: Union[int, float], optimizer: Optimizer, norm_type: float):
model = self.trainer.get_model()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=grad_clip_val, norm_type=norm_type)
@property
def scaler(self):
return torch.cuda.amp.GradScaler()
def optimizer_step(self, trainer, optimizer, closure):
# native amp does not yet support closures.
# TODO: pass the closure to the step ASAP
with trainer.profiler.profile("closure"):
closure()
if not self.trainer.train_loop.automatic_optimization:
trainer.scaler.unscale_(optimizer)
trainer.call_hook("on_after_backward")
with trainer.profiler.profile("optimizer_step"):
trainer.scaler.step(optimizer)
trainer.scaler.update()