lightning/pytorch_lightning/metrics/regression/r2score.py

144 lines
5.5 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Optional
import torch
from pytorch_lightning.metrics.metric import Metric
from pytorch_lightning.metrics.functional.r2score import (
_r2score_update,
_r2score_compute
)
class R2Score(Metric):
r"""
Computes r2 score also known as `coefficient of determination
<https://en.wikipedia.org/wiki/Coefficient_of_determination>`_:
.. math:: R^2 = 1 - \frac{SS_res}{SS_tot}
where :math:`SS_res=\sum_i (y_i - f(x_i))^2` is the sum of residual squares, and
:math:`SS_tot=\sum_i (y_i - \bar{y})^2` is total sum of squares. Can also calculate
adjusted r2 score given by
.. math:: R^2_adj = 1 - \frac{(1-R^2)(n-1)}{n-k-1}
where the parameter :math:`k` (the number of independent regressors) should
be provided as the `adjusted` argument.
Forward accepts
- ``preds`` (float tensor): ``(N,)`` or ``(N, M)`` (multioutput)
- ``target`` (float tensor): ``(N,)`` or ``(N, M)`` (multioutput)
In the case of multioutput, as default the variances will be uniformly
averaged over the additional dimensions. Please see argument `multioutput`
for changing this behavior.
Args:
num_outputs:
Number of outputs in multioutput setting (default is 1)
adjusted:
number of independent regressors for calculating adjusted r2 score.
Default 0 (standard r2 score).
multioutput:
Defines aggregation in the case of multiple output scores. Can be one
of the following strings (default is ``'uniform_average'``.):
* ``'raw_values'`` returns full set of scores
* ``'uniform_average'`` scores are uniformly averaged
* ``'variance_weighted'`` scores are weighted by their individual variances
compute_on_step:
Forward only calls ``update()`` and return None if this is set to False. default: True
dist_sync_on_step:
Synchronize metric state across processes at each ``forward()``
before returning the value at the step. default: False
process_group:
Specify the process group on which synchronization is called. default: None (which selects the entire world)
Example:
>>> from pytorch_lightning.metrics import R2Score
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> r2score = R2Score()
>>> r2score(preds, target)
tensor(0.9486)
>>> target = torch.tensor([[0.5, 1], [-1, 1], [7, -6]])
>>> preds = torch.tensor([[0, 2], [-1, 2], [8, -5]])
>>> r2score = R2Score(num_outputs=2, multioutput='raw_values')
>>> r2score(preds, target)
tensor([0.9654, 0.9082])
"""
def __init__(
self,
num_outputs: int = 1,
adjusted: int = 0,
multioutput: str = "uniform_average",
compute_on_step: bool = True,
dist_sync_on_step: bool = False,
process_group: Optional[Any] = None,
dist_sync_fn: Callable = None,
):
super().__init__(
compute_on_step=compute_on_step,
dist_sync_on_step=dist_sync_on_step,
process_group=process_group,
dist_sync_fn=dist_sync_fn,
)
self.num_outputs = num_outputs
if adjusted < 0 or not isinstance(adjusted, int):
raise ValueError('`adjusted` parameter should be an integer larger or'
' equal to 0.')
self.adjusted = adjusted
allowed_multioutput = ('raw_values', 'uniform_average', 'variance_weighted')
if multioutput not in allowed_multioutput:
raise ValueError(
f'Invalid input to argument `multioutput`. Choose one of the following: {allowed_multioutput}'
)
self.multioutput = multioutput
self.add_state("sum_squared_error", default=torch.zeros(self.num_outputs), dist_reduce_fx="sum")
self.add_state("sum_error", default=torch.zeros(self.num_outputs), dist_reduce_fx="sum")
self.add_state("residual", default=torch.zeros(self.num_outputs), dist_reduce_fx="sum")
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
def update(self, preds: torch.Tensor, target: torch.Tensor):
"""
Update state with predictions and targets.
Args:
preds: Predictions from model
target: Ground truth values
"""
sum_squared_error, sum_error, residual, total = _r2score_update(preds, target)
self.sum_squared_error += sum_squared_error
self.sum_error += sum_error
self.residual += residual
self.total += total
def compute(self) -> torch.Tensor:
"""
Computes r2 score over the metric states.
"""
return _r2score_compute(self.sum_squared_error, self.sum_error, self.residual,
self.total, self.adjusted, self.multioutput)