86 lines
3.0 KiB
Python
86 lines
3.0 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import torch
|
|
from typing import Any, Callable, Optional
|
|
|
|
from pytorch_lightning.metrics.metric import Metric
|
|
from pytorch_lightning.metrics.functional.mean_absolute_error import (
|
|
_mean_absolute_error_update,
|
|
_mean_absolute_error_compute
|
|
)
|
|
|
|
|
|
class MeanAbsoluteError(Metric):
|
|
r"""
|
|
Computes `mean absolute error <https://en.wikipedia.org/wiki/Mean_absolute_error>`_ (MAE):
|
|
|
|
.. math:: \text{MAE} = \frac{1}{N}\sum_i^N | y_i - \hat{y_i} |
|
|
|
|
Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions.
|
|
|
|
Args:
|
|
compute_on_step:
|
|
Forward only calls ``update()`` and return None if this is set to False. default: True
|
|
dist_sync_on_step:
|
|
Synchronize metric state across processes at each ``forward()``
|
|
before returning the value at the step. default: False
|
|
process_group:
|
|
Specify the process group on which synchronization is called. default: None (which selects the entire world)
|
|
|
|
Example:
|
|
|
|
>>> from pytorch_lightning.metrics import MeanAbsoluteError
|
|
>>> target = torch.tensor([3.0, -0.5, 2.0, 7.0])
|
|
>>> preds = torch.tensor([2.5, 0.0, 2.0, 8.0])
|
|
>>> mean_absolute_error = MeanAbsoluteError()
|
|
>>> mean_absolute_error(preds, target)
|
|
tensor(0.5000)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
compute_on_step: bool = True,
|
|
dist_sync_on_step: bool = False,
|
|
process_group: Optional[Any] = None,
|
|
dist_sync_fn: Callable = None,
|
|
):
|
|
super().__init__(
|
|
compute_on_step=compute_on_step,
|
|
dist_sync_on_step=dist_sync_on_step,
|
|
process_group=process_group,
|
|
dist_sync_fn=dist_sync_fn,
|
|
)
|
|
|
|
self.add_state("sum_abs_error", default=torch.tensor(0.0), dist_reduce_fx="sum")
|
|
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
|
|
|
|
def update(self, preds: torch.Tensor, target: torch.Tensor):
|
|
"""
|
|
Update state with predictions and targets.
|
|
|
|
Args:
|
|
preds: Predictions from model
|
|
target: Ground truth values
|
|
"""
|
|
sum_abs_error, n_obs = _mean_absolute_error_update(preds, target)
|
|
|
|
self.sum_abs_error += sum_abs_error
|
|
self.total += n_obs
|
|
|
|
def compute(self):
|
|
"""
|
|
Computes mean absolute error over state.
|
|
"""
|
|
return _mean_absolute_error_compute(self.sum_abs_error, self.total)
|