117 lines
4.2 KiB
Python
117 lines
4.2 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any, Optional
|
|
|
|
import torch
|
|
|
|
from pytorch_lightning.metrics.functional.confusion_matrix import (
|
|
_confusion_matrix_update,
|
|
_confusion_matrix_compute
|
|
)
|
|
from pytorch_lightning.metrics.metric import Metric
|
|
|
|
|
|
class ConfusionMatrix(Metric):
|
|
"""
|
|
Computes the `confusion matrix
|
|
<https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix>`_. Works with binary,
|
|
multiclass, and multilabel data. Accepts logits from a model output or
|
|
integer class values in prediction. Works with multi-dimensional preds and
|
|
target.
|
|
|
|
Note:
|
|
This metric produces a multi-dimensional output, so it can not be directly logged.
|
|
|
|
Forward accepts
|
|
|
|
- ``preds`` (float or long tensor): ``(N, ...)`` or ``(N, C, ...)`` where C is the number of classes
|
|
- ``target`` (long tensor): ``(N, ...)``
|
|
|
|
If preds and target are the same shape and preds is a float tensor, we use the ``self.threshold`` argument.
|
|
This is the case for binary and multi-label logits.
|
|
|
|
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
|
|
|
|
Args:
|
|
num_classes: Number of classes in the dataset.
|
|
normalize: Normalization mode for confusion matrix. Choose from
|
|
|
|
- ``None``: no normalization (default)
|
|
- ``'true'``: normalization over the targets (most commonly used)
|
|
- ``'pred'``: normalization over the predictions
|
|
- ``'all'``: normalization over the whole matrix
|
|
|
|
threshold:
|
|
Threshold value for binary or multi-label logits. default: 0.5
|
|
compute_on_step:
|
|
Forward only calls ``update()`` and return None if this is set to False. default: True
|
|
dist_sync_on_step:
|
|
Synchronize metric state across processes at each ``forward()``
|
|
before returning the value at the step. default: False
|
|
process_group:
|
|
Specify the process group on which synchronization is called. default: None (which selects the entire world)
|
|
|
|
Example:
|
|
|
|
>>> from pytorch_lightning.metrics import ConfusionMatrix
|
|
>>> target = torch.tensor([1, 1, 0, 0])
|
|
>>> preds = torch.tensor([0, 1, 0, 0])
|
|
>>> confmat = ConfusionMatrix(num_classes=2)
|
|
>>> confmat(preds, target)
|
|
tensor([[2., 0.],
|
|
[1., 1.]])
|
|
|
|
"""
|
|
def __init__(
|
|
self,
|
|
num_classes: int,
|
|
normalize: Optional[str] = None,
|
|
threshold: float = 0.5,
|
|
compute_on_step: bool = True,
|
|
dist_sync_on_step: bool = False,
|
|
process_group: Optional[Any] = None,
|
|
):
|
|
|
|
super().__init__(
|
|
compute_on_step=compute_on_step,
|
|
dist_sync_on_step=dist_sync_on_step,
|
|
process_group=process_group,
|
|
)
|
|
self.num_classes = num_classes
|
|
self.normalize = normalize
|
|
self.threshold = threshold
|
|
|
|
allowed_normalize = ('true', 'pred', 'all', None)
|
|
assert self.normalize in allowed_normalize, \
|
|
f"Argument average needs to one of the following: {allowed_normalize}"
|
|
|
|
self.add_state("confmat", default=torch.zeros(num_classes, num_classes), dist_reduce_fx="sum")
|
|
|
|
def update(self, preds: torch.Tensor, target: torch.Tensor):
|
|
"""
|
|
Update state with predictions and targets.
|
|
|
|
Args:
|
|
preds: Predictions from model
|
|
target: Ground truth values
|
|
"""
|
|
confmat = _confusion_matrix_update(preds, target, self.num_classes, self.threshold)
|
|
self.confmat += confmat
|
|
|
|
def compute(self) -> torch.Tensor:
|
|
"""
|
|
Computes confusion matrix
|
|
"""
|
|
return _confusion_matrix_compute(self.confmat, self.normalize)
|