lightning/pytorch_lightning/loggers/neptune.py

396 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Neptune Logger
--------------
"""
from argparse import Namespace
from typing import Any, Dict, Iterable, Optional, Union
import torch
from torch import is_tensor
from pytorch_lightning import _logger as log
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment
from pytorch_lightning.utilities import rank_zero_only, _module_available
_NEPTUNE_AVAILABLE = _module_available("neptune")
if _NEPTUNE_AVAILABLE:
import neptune
from neptune.experiments import Experiment
else:
# needed for test mocks, these tests shall be updated
neptune, Experiment = None, None
class NeptuneLogger(LightningLoggerBase):
r"""
Log using `Neptune <https://neptune.ai>`_.
Install it with pip:
.. code-block:: bash
pip install neptune-client
The Neptune logger can be used in the online mode or offline (silent) mode.
To log experiment data in online mode, :class:`NeptuneLogger` requires an API key.
In offline mode, the logger does not connect to Neptune.
**ONLINE MODE**
.. code-block:: python
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import NeptuneLogger
# arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class
# We are using an api_key for the anonymous user "neptuner" but you can use your own.
neptune_logger = NeptuneLogger(
api_key='ANONYMOUS',
project_name='shared/pytorch-lightning-integration',
experiment_name='default', # Optional,
params={'max_epochs': 10}, # Optional,
tags=['pytorch-lightning', 'mlp'] # Optional,
)
trainer = Trainer(max_epochs=10, logger=neptune_logger)
**OFFLINE MODE**
.. code-block:: python
from pytorch_lightning.loggers import NeptuneLogger
# arguments made to NeptuneLogger are passed on to the neptune.experiments.Experiment class
neptune_logger = NeptuneLogger(
offline_mode=True,
project_name='USER_NAME/PROJECT_NAME',
experiment_name='default', # Optional,
params={'max_epochs': 10}, # Optional,
tags=['pytorch-lightning', 'mlp'] # Optional,
)
trainer = Trainer(max_epochs=10, logger=neptune_logger)
Use the logger anywhere in you :class:`~pytorch_lightning.core.lightning.LightningModule` as follows:
.. code-block:: python
class LitModel(LightningModule):
def training_step(self, batch, batch_idx):
# log metrics
self.logger.experiment.log_metric('acc_train', ...)
# log images
self.logger.experiment.log_image('worse_predictions', ...)
# log model checkpoint
self.logger.experiment.log_artifact('model_checkpoint.pt', ...)
self.logger.experiment.whatever_neptune_supports(...)
def any_lightning_module_function_or_hook(self):
self.logger.experiment.log_metric('acc_train', ...)
self.logger.experiment.log_image('worse_predictions', ...)
self.logger.experiment.log_artifact('model_checkpoint.pt', ...)
self.logger.experiment.whatever_neptune_supports(...)
If you want to log objects after the training is finished use ``close_after_fit=False``:
.. code-block:: python
neptune_logger = NeptuneLogger(
...
close_after_fit=False,
...
)
trainer = Trainer(logger=neptune_logger)
trainer.fit()
# Log test metrics
trainer.test(model)
# Log additional metrics
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_true, y_pred)
neptune_logger.experiment.log_metric('test_accuracy', accuracy)
# Log charts
from scikitplot.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(16, 12))
plot_confusion_matrix(y_true, y_pred, ax=ax)
neptune_logger.experiment.log_image('confusion_matrix', fig)
# Save checkpoints folder
neptune_logger.experiment.log_artifact('my/checkpoints')
# When you are done, stop the experiment
neptune_logger.experiment.stop()
See Also:
- An `Example experiment <https://ui.neptune.ai/o/shared/org/
pytorch-lightning-integration/e/PYTOR-66/charts>`_ showing the UI of Neptune.
- `Tutorial <https://docs.neptune.ai/integrations/pytorch_lightning.html>`_ on how to use
Pytorch Lightning with Neptune.
Args:
api_key: Required in online mode.
Neptune API token, found on https://neptune.ai.
Read how to get your
`API key <https://docs.neptune.ai/python-api/tutorials/get-started.html#copy-api-token>`_.
It is recommended to keep it in the `NEPTUNE_API_TOKEN`
environment variable and then you can leave ``api_key=None``.
project_name: Required in online mode. Qualified name of a project in a form of
"namespace/project_name" for example "tom/minst-classification".
If ``None``, the value of `NEPTUNE_PROJECT` environment variable will be taken.
You need to create the project in https://neptune.ai first.
offline_mode: Optional default ``False``. If ``True`` no logs will be sent
to Neptune. Usually used for debug purposes.
close_after_fit: Optional default ``True``. If ``False`` the experiment
will not be closed after training and additional metrics,
images or artifacts can be logged. Also, remember to close the experiment explicitly
by running ``neptune_logger.experiment.stop()``.
experiment_name: Optional. Editable name of the experiment.
Name is displayed in the experiments Details (Metadata section) and
in experiments view as a column.
experiment_id: Optional. Default is ``None``. The ID of the existing experiment.
If specified, connect to experiment with experiment_id in project_name.
Input arguments "experiment_name", "params", "properties" and "tags" will be overriden based
on fetched experiment data.
prefix: A string to put at the beginning of metric keys.
\**kwargs: Additional arguments like `params`, `tags`, `properties`, etc. used by
:func:`neptune.Session.create_experiment` can be passed as keyword arguments in this logger.
"""
LOGGER_JOIN_CHAR = '-'
def __init__(
self,
api_key: Optional[str] = None,
project_name: Optional[str] = None,
close_after_fit: Optional[bool] = True,
offline_mode: bool = False,
experiment_name: Optional[str] = None,
experiment_id: Optional[str] = None,
prefix: str = '',
**kwargs
):
if neptune is None:
raise ImportError('You want to use `neptune` logger which is not installed yet,'
' install it with `pip install neptune-client`.')
super().__init__()
self.api_key = api_key
self.project_name = project_name
self.offline_mode = offline_mode
self.close_after_fit = close_after_fit
self.experiment_name = experiment_name
self._prefix = prefix
self._kwargs = kwargs
self.experiment_id = experiment_id
self._experiment = self._create_or_get_experiment()
log.info(f'NeptuneLogger will work in {"offline" if self.offline_mode else "online"} mode')
def __getstate__(self):
state = self.__dict__.copy()
# Experiment cannot be pickled, and additionally its ID cannot be pickled in offline mode
state['_experiment'] = None
if self.offline_mode:
state['experiment_id'] = None
return state
@property
@rank_zero_experiment
def experiment(self) -> Experiment:
r"""
Actual Neptune object. To use neptune features in your
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
Example::
self.logger.experiment.some_neptune_function()
"""
# Note that even though we initialize self._experiment in __init__,
# it may still end up being None after being pickled and un-pickled
if self._experiment is None:
self._experiment = self._create_or_get_experiment()
return self._experiment
@rank_zero_only
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
params = self._convert_params(params)
params = self._flatten_dict(params)
for key, val in params.items():
self.experiment.set_property(f'param__{key}', val)
@rank_zero_only
def log_metrics(
self,
metrics: Dict[str, Union[torch.Tensor, float]],
step: Optional[int] = None
) -> None:
"""
Log metrics (numeric values) in Neptune experiments.
Args:
metrics: Dictionary with metric names as keys and measured quantities as values
step: Step number at which the metrics should be recorded, must be strictly increasing
"""
assert rank_zero_only.rank == 0, 'experiment tried to log from global_rank != 0'
metrics = self._add_prefix(metrics)
for key, val in metrics.items():
self.log_metric(key, val, step=step)
@rank_zero_only
def finalize(self, status: str) -> None:
super().finalize(status)
if self.close_after_fit:
self.experiment.stop()
@property
def save_dir(self) -> Optional[str]:
# Neptune does not save any local files
return None
@property
def name(self) -> str:
if self.offline_mode:
return 'offline-name'
else:
return self.experiment.name
@property
def version(self) -> str:
if self.offline_mode:
return 'offline-id-1234'
else:
return self.experiment.id
@rank_zero_only
def log_metric(
self,
metric_name: str,
metric_value: Union[torch.Tensor, float, str],
step: Optional[int] = None
) -> None:
"""
Log metrics (numeric values) in Neptune experiments.
Args:
metric_name: The name of log, i.e. mse, loss, accuracy.
metric_value: The value of the log (data-point).
step: Step number at which the metrics should be recorded, must be strictly increasing
"""
if is_tensor(metric_value):
metric_value = metric_value.cpu().detach()
if step is None:
self.experiment.log_metric(metric_name, metric_value)
else:
self.experiment.log_metric(metric_name, x=step, y=metric_value)
@rank_zero_only
def log_text(self, log_name: str, text: str, step: Optional[int] = None) -> None:
"""
Log text data in Neptune experiments.
Args:
log_name: The name of log, i.e. mse, my_text_data, timing_info.
text: The value of the log (data-point).
step: Step number at which the metrics should be recorded, must be strictly increasing
"""
self.log_metric(log_name, text, step=step)
@rank_zero_only
def log_image(self,
log_name: str,
image: Union[str, Any],
step: Optional[int] = None) -> None:
"""
Log image data in Neptune experiment
Args:
log_name: The name of log, i.e. bboxes, visualisations, sample_images.
image: The value of the log (data-point).
Can be one of the following types: PIL image, `matplotlib.figure.Figure`,
path to image file (str)
step: Step number at which the metrics should be recorded, must be strictly increasing
"""
if step is None:
self.experiment.log_image(log_name, image)
else:
self.experiment.log_image(log_name, x=step, y=image)
@rank_zero_only
def log_artifact(self, artifact: str, destination: Optional[str] = None) -> None:
"""Save an artifact (file) in Neptune experiment storage.
Args:
artifact: A path to the file in local filesystem.
destination: Optional. Default is ``None``. A destination path.
If ``None`` is passed, an artifact file name will be used.
"""
self.experiment.log_artifact(artifact, destination)
@rank_zero_only
def set_property(self, key: str, value: Any) -> None:
"""
Set key-value pair as Neptune experiment property.
Args:
key: Property key.
value: New value of a property.
"""
self.experiment.set_property(key, value)
@rank_zero_only
def append_tags(self, tags: Union[str, Iterable[str]]) -> None:
"""
Appends tags to the neptune experiment.
Args:
tags: Tags to add to the current experiment. If str is passed, a single tag is added.
If multiple - comma separated - str are passed, all of them are added as tags.
If list of str is passed, all elements of the list are added as tags.
"""
if str(tags) == tags:
tags = [tags] # make it as an iterable is if it is not yet
self.experiment.append_tags(*tags)
def _create_or_get_experiment(self):
if self.offline_mode:
project = neptune.Session(backend=neptune.OfflineBackend()).get_project('dry-run/project')
else:
session = neptune.Session.with_default_backend(api_token=self.api_key)
project = session.get_project(self.project_name)
if self.experiment_id is None:
exp = project.create_experiment(name=self.experiment_name, **self._kwargs)
self.experiment_id = exp.id
else:
exp = project.get_experiments(id=self.experiment_id)[0]
self.experiment_name = exp.get_system_properties()['name']
self.params = exp.get_parameters()
self.properties = exp.get_properties()
self.tags = exp.get_tags()
return exp