190 lines
6.5 KiB
Python
190 lines
6.5 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from torch import optim
|
|
|
|
from pytorch_lightning.accelerators.accelerator import Accelerator
|
|
from pytorch_lightning.cluster_environments import ClusterEnvironment
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
from pytorch_lightning.core.step_result import Result
|
|
from pytorch_lightning.distributed import LightningDistributed
|
|
from pytorch_lightning.overrides.data_parallel import LightningDataParallel
|
|
from pytorch_lightning.utilities import AMPType
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
|
|
class DataParallelAccelerator(Accelerator):
|
|
|
|
def __init__(self, trainer, cluster_environment: Optional[ClusterEnvironment] = None):
|
|
"""
|
|
Runs training using DP via manual start (not HPC cluster)
|
|
|
|
Example::
|
|
|
|
# default
|
|
trainer = Trainer(accelerator=DataParallelAccelerator())
|
|
|
|
"""
|
|
super().__init__(trainer, cluster_environment)
|
|
self.model_autocast_original_forward = None
|
|
self.dist = LightningDistributed()
|
|
self.nickname = 'dp'
|
|
|
|
def setup(self, model):
|
|
# call setup after the ddp process has connected
|
|
self.trainer.call_setup_hook(model)
|
|
|
|
# put model on correct device
|
|
model.cuda(self.trainer.root_gpu)
|
|
|
|
# CHOOSE OPTIMIZER
|
|
# allow for lr schedulers as well
|
|
self.setup_optimizers(model)
|
|
|
|
# init torch data parallel
|
|
model = self.__init_torch_data_parallel(model)
|
|
|
|
# hack forward to do autocast for the user
|
|
self.model_autocast_original_forward = model.forward
|
|
|
|
# init half precision
|
|
if self.trainer.amp_backend:
|
|
model = self.__init_half_precision(model)
|
|
|
|
self.trainer.convert_to_lightning_optimizers()
|
|
|
|
self.trainer.model = model
|
|
|
|
def __init_torch_data_parallel(self, model):
|
|
# create list of device ids
|
|
device_ids = self.trainer.data_parallel_device_ids
|
|
if isinstance(device_ids, int):
|
|
device_ids = list(range(device_ids))
|
|
|
|
# set dp device
|
|
torch.cuda.set_device(self.trainer.root_gpu)
|
|
model = LightningDataParallel(model, device_ids=device_ids)
|
|
return model
|
|
|
|
def __init_half_precision(self, model):
|
|
if self.trainer.amp_backend == AMPType.NATIVE:
|
|
self.__init_native_amp(model)
|
|
else:
|
|
model = self.__init_nvidia_apex(model)
|
|
return model
|
|
|
|
def __init_native_amp(self, model):
|
|
model.forward = torch.cuda.amp.autocast()(model.forward)
|
|
|
|
def __init_nvidia_apex(self, model):
|
|
# check for this bug (amp + dp + !01 doesn't work)
|
|
# https://github.com/NVIDIA/apex/issues/227
|
|
if self.trainer.amp_level == 'O2':
|
|
raise MisconfigurationException(
|
|
f'Amp level {self.trainer.amp_level} with DataParallel is not supported.'
|
|
f' See this note from NVIDIA for more info: https://github.com/NVIDIA/apex/issues/227.'
|
|
f' We recommend you switch to ddp if you want to use amp')
|
|
else:
|
|
model = self.trainer.precision_connector.connect(model)
|
|
|
|
return model
|
|
|
|
def train(self):
|
|
model = self.trainer.model
|
|
# set up training routine
|
|
self.trainer.train_loop.setup_training(model)
|
|
|
|
# train or test
|
|
results = self.train_or_test()
|
|
|
|
return results
|
|
|
|
def teardown(self):
|
|
# replace the original fwd function
|
|
self.trainer.model.forward = self.model_autocast_original_forward
|
|
self.barrier()
|
|
|
|
def _step(self, args):
|
|
if self.trainer.amp_backend == AMPType.NATIVE:
|
|
with torch.cuda.amp.autocast():
|
|
output = self.trainer.model(*args)
|
|
else:
|
|
output = self.trainer.model(*args)
|
|
return output
|
|
|
|
def training_step(self, args):
|
|
return self._step(args)
|
|
|
|
def validation_step(self, args):
|
|
return self._step(args)
|
|
|
|
def test_step(self, args):
|
|
return self._step(args)
|
|
|
|
def training_step_end(self, output):
|
|
if isinstance(output, Result):
|
|
output.dp_reduce()
|
|
elif isinstance(output, torch.Tensor):
|
|
output = output.mean()
|
|
return output
|
|
|
|
def validation_step_end(self, output):
|
|
if isinstance(output, Result):
|
|
output.dp_reduce()
|
|
elif isinstance(output, torch.Tensor):
|
|
output = output.mean()
|
|
return output
|
|
|
|
def test_step_end(self, output):
|
|
if isinstance(output, Result):
|
|
output.dp_reduce()
|
|
elif isinstance(output, torch.Tensor):
|
|
output = output.mean()
|
|
return output
|
|
|
|
def reinit_scheduler_properties(self, optimizers: list, schedulers: list):
|
|
"""
|
|
Reinitialize optimizer.step properties added by schedulers
|
|
"""
|
|
for scheduler in schedulers:
|
|
scheduler = scheduler['scheduler']
|
|
|
|
for optimizer in optimizers:
|
|
# check that we dont mix users optimizers and schedulers
|
|
if scheduler.optimizer == optimizer:
|
|
# Find the mro belonging to the base lr scheduler class
|
|
for i, mro in enumerate(scheduler.__class__.__mro__):
|
|
is_regular_scheduler = optim.lr_scheduler._LRScheduler
|
|
is_lr_reduce_on_plateau = optim.lr_scheduler.ReduceLROnPlateau
|
|
if is_regular_scheduler or is_lr_reduce_on_plateau:
|
|
idx = i
|
|
state = scheduler.state_dict()
|
|
else:
|
|
state = None
|
|
|
|
scheduler.__class__.__mro__[idx].__init__(scheduler, optimizer)
|
|
if state is not None:
|
|
scheduler.load_state_dict(state)
|
|
|
|
def get_reference_model(self, model) -> LightningModule:
|
|
if isinstance(model, LightningDataParallel):
|
|
return model.module
|
|
return model
|
|
|
|
@property
|
|
def require_distributed_sampler(self):
|
|
return False
|