lightning/pytorch_lightning/metrics/compositional.py

93 lines
2.8 KiB
Python

from typing import Callable, Union
import torch
from pytorch_lightning.metrics.metric import Metric
class CompositionalMetric(Metric):
"""Composition of two metrics with a specific operator
which will be executed upon metric's compute
"""
def __init__(
self,
operator: Callable,
metric_a: Union[Metric, int, float, torch.Tensor],
metric_b: Union[Metric, int, float, torch.Tensor, None],
):
"""
Args:
operator: the operator taking in one (if metric_b is None)
or two arguments. Will be applied to outputs of metric_a.compute()
and (optionally if metric_b is not None) metric_b.compute()
metric_a: first metric whose compute() result is the first argument of operator
metric_b: second metric whose compute() result is the second argument of operator.
For operators taking in only one input, this should be None
"""
super().__init__()
self.op = operator
if isinstance(metric_a, torch.Tensor):
self.register_buffer("metric_a", metric_a)
else:
self.metric_a = metric_a
if isinstance(metric_b, torch.Tensor):
self.register_buffer("metric_b", metric_b)
else:
self.metric_b = metric_b
def _sync_dist(self, dist_sync_fn=None):
# No syncing required here. syncing will be done in metric_a and metric_b
pass
def update(self, *args, **kwargs):
if isinstance(self.metric_a, Metric):
self.metric_a.update(*args, **self.metric_a._filter_kwargs(**kwargs))
if isinstance(self.metric_b, Metric):
self.metric_b.update(*args, **self.metric_b._filter_kwargs(**kwargs))
def compute(self):
# also some parsing for kwargs?
if isinstance(self.metric_a, Metric):
val_a = self.metric_a.compute()
else:
val_a = self.metric_a
if isinstance(self.metric_b, Metric):
val_b = self.metric_b.compute()
else:
val_b = self.metric_b
if val_b is None:
return self.op(val_a)
return self.op(val_a, val_b)
def reset(self):
if isinstance(self.metric_a, Metric):
self.metric_a.reset()
if isinstance(self.metric_b, Metric):
self.metric_b.reset()
def persistent(self, mode: bool = False):
if isinstance(self.metric_a, Metric):
self.metric_a.persistent(mode=mode)
if isinstance(self.metric_b, Metric):
self.metric_b.persistent(mode=mode)
def __repr__(self):
repr_str = (
self.__class__.__name__
+ f"(\n {self.op.__name__}(\n {repr(self.metric_a)},\n {repr(self.metric_b)}\n )\n)"
)
return repr_str