148 lines
5.7 KiB
Python
148 lines
5.7 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
|
|
from pytorch_lightning.metrics.functional.roc import _roc_compute, _roc_update
|
|
from pytorch_lightning.metrics.metric import Metric
|
|
from pytorch_lightning.utilities import rank_zero_warn
|
|
|
|
|
|
class ROC(Metric):
|
|
"""
|
|
Computes the Receiver Operating Characteristic (ROC). Works for both
|
|
binary and multiclass problems. In the case of multiclass, the values will
|
|
be calculated based on a one-vs-the-rest approach.
|
|
|
|
Forward accepts
|
|
|
|
- ``preds`` (float tensor): ``(N, ...)`` (binary) or ``(N, C, ...)`` (multiclass) tensor
|
|
with probabilities, where C is the number of classes.
|
|
|
|
- ``target`` (long tensor): ``(N, ...)`` or ``(N, C, ...)`` with integer labels
|
|
|
|
Args:
|
|
num_classes: integer with number of classes. Not nessesary to provide
|
|
for binary problems.
|
|
pos_label: integer determining the positive class. Default is ``None``
|
|
which for binary problem is translate to 1. For multiclass problems
|
|
this argument should not be set as we iteratively change it in the
|
|
range [0,num_classes-1]
|
|
compute_on_step:
|
|
Forward only calls ``update()`` and return None if this is set to False. default: True
|
|
dist_sync_on_step:
|
|
Synchronize metric state across processes at each ``forward()``
|
|
before returning the value at the step. default: False
|
|
process_group:
|
|
Specify the process group on which synchronization is called. default: None (which selects the entire world)
|
|
|
|
Example (binary case):
|
|
|
|
>>> from pytorch_lightning.metrics import ROC
|
|
>>> pred = torch.tensor([0, 1, 2, 3])
|
|
>>> target = torch.tensor([0, 1, 1, 1])
|
|
>>> roc = ROC(pos_label=1)
|
|
>>> fpr, tpr, thresholds = roc(pred, target)
|
|
>>> fpr
|
|
tensor([0., 0., 0., 0., 1.])
|
|
>>> tpr
|
|
tensor([0.0000, 0.3333, 0.6667, 1.0000, 1.0000])
|
|
>>> thresholds
|
|
tensor([4, 3, 2, 1, 0])
|
|
|
|
Example (multiclass case):
|
|
|
|
>>> from pytorch_lightning.metrics import ROC
|
|
>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05],
|
|
... [0.05, 0.75, 0.05, 0.05],
|
|
... [0.05, 0.05, 0.75, 0.05],
|
|
... [0.05, 0.05, 0.05, 0.75]])
|
|
>>> target = torch.tensor([0, 1, 3, 2])
|
|
>>> roc = ROC(num_classes=4)
|
|
>>> fpr, tpr, thresholds = roc(pred, target)
|
|
>>> fpr
|
|
[tensor([0., 0., 1.]), tensor([0., 0., 1.]), tensor([0.0000, 0.3333, 1.0000]), tensor([0.0000, 0.3333, 1.0000])]
|
|
>>> tpr
|
|
[tensor([0., 1., 1.]), tensor([0., 1., 1.]), tensor([0., 0., 1.]), tensor([0., 0., 1.])]
|
|
>>> thresholds # doctest: +NORMALIZE_WHITESPACE
|
|
[tensor([1.7500, 0.7500, 0.0500]),
|
|
tensor([1.7500, 0.7500, 0.0500]),
|
|
tensor([1.7500, 0.7500, 0.0500]),
|
|
tensor([1.7500, 0.7500, 0.0500])]
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_classes: Optional[int] = None,
|
|
pos_label: Optional[int] = None,
|
|
compute_on_step: bool = True,
|
|
dist_sync_on_step: bool = False,
|
|
process_group: Optional[Any] = None,
|
|
):
|
|
super().__init__(
|
|
compute_on_step=compute_on_step,
|
|
dist_sync_on_step=dist_sync_on_step,
|
|
process_group=process_group,
|
|
)
|
|
|
|
self.num_classes = num_classes
|
|
self.pos_label = pos_label
|
|
|
|
self.add_state("preds", default=[], dist_reduce_fx=None)
|
|
self.add_state("target", default=[], dist_reduce_fx=None)
|
|
|
|
rank_zero_warn(
|
|
'Metric `ROC` will save all targets and predictions in buffer.'
|
|
' For large datasets this may lead to large memory footprint.'
|
|
)
|
|
|
|
def update(self, preds: torch.Tensor, target: torch.Tensor):
|
|
"""
|
|
Update state with predictions and targets.
|
|
|
|
Args:
|
|
preds: Predictions from model
|
|
target: Ground truth values
|
|
"""
|
|
preds, target, num_classes, pos_label = _roc_update(preds, target, self.num_classes, self.pos_label)
|
|
self.preds.append(preds)
|
|
self.target.append(target)
|
|
self.num_classes = num_classes
|
|
self.pos_label = pos_label
|
|
|
|
def compute(
|
|
self
|
|
) -> Union[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], Tuple[List[torch.Tensor], List[torch.Tensor],
|
|
List[torch.Tensor]]]:
|
|
"""
|
|
Compute the receiver operating characteristic
|
|
|
|
Returns:
|
|
3-element tuple containing
|
|
|
|
fpr:
|
|
tensor with false positive rates.
|
|
If multiclass, this is a list of such tensors, one for each class.
|
|
tpr:
|
|
tensor with true positive rates.
|
|
If multiclass, this is a list of such tensors, one for each class.
|
|
thresholds:
|
|
thresholds used for computing false- and true postive rates
|
|
"""
|
|
preds = torch.cat(self.preds, dim=0)
|
|
target = torch.cat(self.target, dim=0)
|
|
return _roc_compute(preds, target, self.num_classes, self.pos_label)
|