lightning/pytorch_lightning/metrics/classification/confusion_matrix.py

115 lines
4.3 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional
import torch
from pytorch_lightning.metrics.functional.confusion_matrix import _confusion_matrix_compute, _confusion_matrix_update
from pytorch_lightning.metrics.metric import Metric
class ConfusionMatrix(Metric):
"""
Computes the `confusion matrix
<https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix>`_. Works with binary,
multiclass, and multilabel data. Accepts probabilities from a model output or
integer class values in prediction. Works with multi-dimensional preds and
target.
Note:
This metric produces a multi-dimensional output, so it can not be directly logged.
Forward accepts
- ``preds`` (float or long tensor): ``(N, ...)`` or ``(N, C, ...)`` where C is the number of classes
- ``target`` (long tensor): ``(N, ...)``
If preds and target are the same shape and preds is a float tensor, we use the ``self.threshold`` argument
to convert into integer labels. This is the case for binary and multi-label probabilities.
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
Args:
num_classes: Number of classes in the dataset.
normalize: Normalization mode for confusion matrix. Choose from
- ``None`` or ``'none'``: no normalization (default)
- ``'true'``: normalization over the targets (most commonly used)
- ``'pred'``: normalization over the predictions
- ``'all'``: normalization over the whole matrix
threshold:
Threshold value for binary or multi-label probabilites. default: 0.5
compute_on_step:
Forward only calls ``update()`` and return None if this is set to False. default: True
dist_sync_on_step:
Synchronize metric state across processes at each ``forward()``
before returning the value at the step. default: False
process_group:
Specify the process group on which synchronization is called. default: None (which selects the entire world)
Example:
>>> from pytorch_lightning.metrics import ConfusionMatrix
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> confmat = ConfusionMatrix(num_classes=2)
>>> confmat(preds, target)
tensor([[2., 0.],
[1., 1.]])
"""
def __init__(
self,
num_classes: int,
normalize: Optional[str] = None,
threshold: float = 0.5,
compute_on_step: bool = True,
dist_sync_on_step: bool = False,
process_group: Optional[Any] = None,
):
super().__init__(
compute_on_step=compute_on_step,
dist_sync_on_step=dist_sync_on_step,
process_group=process_group,
)
self.num_classes = num_classes
self.normalize = normalize
self.threshold = threshold
allowed_normalize = ('true', 'pred', 'all', 'none', None)
assert self.normalize in allowed_normalize, \
f"Argument average needs to one of the following: {allowed_normalize}"
self.add_state("confmat", default=torch.zeros(num_classes, num_classes), dist_reduce_fx="sum")
def update(self, preds: torch.Tensor, target: torch.Tensor):
"""
Update state with predictions and targets.
Args:
preds: Predictions from model
target: Ground truth values
"""
confmat = _confusion_matrix_update(preds, target, self.num_classes, self.threshold)
self.confmat += confmat
def compute(self) -> torch.Tensor:
"""
Computes confusion matrix
"""
return _confusion_matrix_compute(self.confmat, self.normalize)