lightning/docs/source/common/loggers.rst

268 lines
7.9 KiB
ReStructuredText

.. testsetup:: *
from pytorch_lightning.trainer.trainer import Trainer
from pytorch_lightning.core.lightning import LightningModule
.. _loggers:
*******
Loggers
*******
Lightning supports the most popular logging frameworks (TensorBoard, Comet, etc...). TensorBoard is used by default,
but you can pass to the :class:`~pytorch_lightning.trainer.trainer.Trainer` any combination of the following loggers.
.. note::
All loggers log by default to `os.getcwd()`. To change the path without creating a logger set
`Trainer(default_root_dir='/your/path/to/save/checkpoints')`
Read more about :doc:`logging <../extensions/logging>` options.
To log arbitrary artifacts like images or audio samples use the `trainer.log_dir` property to resolve
the path.
.. code-block:: python
def training_step(self, batch, batch_idx):
img = ...
log_image(img, self.trainer.log_dir)
Comet.ml
========
`Comet.ml <https://www.comet.ml/site/>`_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.CometLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install comet-ml
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode::
import os
from pytorch_lightning.loggers import CometLogger
comet_logger = CometLogger(
api_key=os.environ.get("COMET_API_KEY"),
workspace=os.environ.get("COMET_WORKSPACE"), # Optional
save_dir=".", # Optional
project_name="default_project", # Optional
rest_api_key=os.environ.get("COMET_REST_API_KEY"), # Optional
experiment_name="default", # Optional
)
trainer = Trainer(logger=comet_logger)
The :class:`~pytorch_lightning.loggers.CometLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
self.logger.experiment.add_image("generated_images", some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.CometLogger` docs.
----------------
MLflow
======
`MLflow <https://mlflow.org/>`_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.MLFlowLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install mlflow
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. code-block:: python
from pytorch_lightning.loggers import MLFlowLogger
mlf_logger = MLFlowLogger(experiment_name="default", tracking_uri="file:./ml-runs")
trainer = Trainer(logger=mlf_logger)
.. seealso::
:class:`~pytorch_lightning.loggers.MLFlowLogger` docs.
----------------
Neptune.ai
==========
`Neptune.ai <https://neptune.ai/>`_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.NeptuneLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install neptune-client
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode::
from pytorch_lightning.loggers import NeptuneLogger
neptune_logger = NeptuneLogger(
api_key="ANONYMOUS", # replace with your own
project_name="shared/pytorch-lightning-integration",
experiment_name="default", # Optional,
params={"max_epochs": 10}, # Optional,
tags=["pytorch-lightning", "mlp"], # Optional,
)
trainer = Trainer(logger=neptune_logger)
The :class:`~pytorch_lightning.loggers.NeptuneLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
self.logger.experiment.add_image("generated_images", some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.NeptuneLogger` docs.
----------------
Tensorboard
===========
To use `TensorBoard <https://pytorch.org/docs/stable/tensorboard.html>`_ as your logger do the following.
.. testcode::
from pytorch_lightning.loggers import TensorBoardLogger
logger = TensorBoardLogger("tb_logs", name="my_model")
trainer = Trainer(logger=logger)
The :class:`~pytorch_lightning.loggers.TensorBoardLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
self.logger.experiment.add_image("generated_images", some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.TensorBoardLogger` docs.
----------------
Test Tube
=========
`Test Tube <https://github.com/williamFalcon/test-tube>`_ is a
`TensorBoard <https://pytorch.org/docs/stable/tensorboard.html>`_ logger but with nicer file structure.
To use :class:`~pytorch_lightning.loggers.TestTubeLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install test_tube
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. code-block:: python
from pytorch_lightning.loggers import TestTubeLogger
logger = TestTubeLogger("tb_logs", name="my_model")
trainer = Trainer(logger=logger)
The :class:`~pytorch_lightning.loggers.TestTubeLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
self.logger.experiment.add_image("generated_images", some_img, 0)
.. seealso::
:class:`~pytorch_lightning.loggers.TestTubeLogger` docs.
----------------
Weights and Biases
==================
`Weights and Biases <https://docs.wandb.ai/integrations/lightning/>`_ is a third-party logger.
To use :class:`~pytorch_lightning.loggers.WandbLogger` as your logger do the following.
First, install the package:
.. code-block:: bash
pip install wandb
Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. code-block:: python
from pytorch_lightning.loggers import WandbLogger
# instrument experiment with W&B
wandb_logger = WandbLogger(project="MNIST", log_model="all")
trainer = Trainer(logger=wandb_logger)
# log gradients and model topology
wandb_logger.watch(model)
The :class:`~pytorch_lightning.loggers.WandbLogger` is available anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
self.log({"generated_images": [wandb.Image(some_img, caption="...")]})
.. seealso::
:class:`~pytorch_lightning.loggers.WandbLogger` docs.
----------------
Multiple Loggers
================
Lightning supports the use of multiple loggers, just pass a list to the
:class:`~pytorch_lightning.trainer.trainer.Trainer`.
.. code-block:: python
from pytorch_lightning.loggers import TensorBoardLogger, TestTubeLogger
logger1 = TensorBoardLogger("tb_logs", name="my_model")
logger2 = TestTubeLogger("tb_logs", name="my_model")
trainer = Trainer(logger=[logger1, logger2])
The loggers are available as a list anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule`.
.. testcode::
class MyModule(LightningModule):
def any_lightning_module_function_or_hook(self):
some_img = fake_image()
# Option 1
self.logger.experiment[0].add_image("generated_images", some_img, 0)
# Option 2
self.logger[0].experiment.add_image("generated_images", some_img, 0)