90 lines
2.4 KiB
Python
90 lines
2.4 KiB
Python
import os
|
|
from typing import Optional
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.callbacks import Callback
|
|
from pytorch_lightning.plugins.training_type.rpc_sequential import RPCPlugin
|
|
from tests.helpers.boring_model import BoringModel
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ,
|
|
{
|
|
"CUDA_VISIBLE_DEVICES": "0,1",
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"LOCAL_RANK": "0",
|
|
"SLURM_PROCID": "0",
|
|
"SLURM_LOCALID": "0",
|
|
},
|
|
)
|
|
@mock.patch("torch.cuda.device_count", return_value=2)
|
|
@pytest.mark.parametrize(
|
|
["ddp_backend", "gpus", "num_processes"],
|
|
[("ddp_cpu", None, 2), ("ddp", 2, 0), ("ddp_spawn", 2, 0)],
|
|
)
|
|
@RunIf(rpc=True)
|
|
def test_rpc_choice(tmpdir, ddp_backend, gpus, num_processes):
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
assert isinstance(trainer.training_type_plugin, RPCPlugin)
|
|
raise RuntimeError('finished plugin check')
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=str(tmpdir),
|
|
fast_dev_run=True,
|
|
gpus=gpus,
|
|
num_processes=num_processes,
|
|
distributed_backend=ddp_backend,
|
|
callbacks=[CB()],
|
|
plugins=[RPCPlugin()]
|
|
)
|
|
|
|
with pytest.raises(RuntimeError, match='finished plugin check'):
|
|
trainer.fit(model)
|
|
|
|
|
|
class CustomRPCPlugin(RPCPlugin):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.rpc_save_model_count = 0
|
|
self.worker_optimizer_step_count = 0
|
|
|
|
def rpc_save_model(self, *_) -> None:
|
|
self.rpc_save_model_count += 1
|
|
|
|
def barrier(self, name: Optional[str] = None) -> None:
|
|
return
|
|
|
|
|
|
@RunIf(min_gpus=2, special=True, rpc=True)
|
|
def test_rpc_function_calls_ddp(tmpdir):
|
|
model = BoringModel()
|
|
plugin = CustomRPCPlugin()
|
|
max_epochs = 2
|
|
limit_train_batches = 2
|
|
trainer = Trainer(
|
|
limit_train_batches=limit_train_batches,
|
|
limit_val_batches=2,
|
|
max_epochs=max_epochs,
|
|
gpus=2,
|
|
distributed_backend='ddp',
|
|
plugins=[plugin],
|
|
default_root_dir=tmpdir,
|
|
)
|
|
|
|
trainer.fit(model)
|
|
if trainer.global_rank == 0: # Main process
|
|
assert plugin.rpc_save_model_count == max_epochs
|
|
else: # Worker process
|
|
assert plugin.rpc_save_model_count == max_epochs
|