lightning/tests/plugins/test_double_plugin.py

138 lines
4.6 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from torch.utils.data import DataLoader, Dataset
from pytorch_lightning import Trainer
from tests.helpers.boring_model import BoringModel, RandomDataset
class RandomFloatIntDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.float_data = torch.randn(length, size)
self.int_data = torch.randint(10, (length, 1))
def __getitem__(self, index):
return self.float_data[index], self.int_data[index]
def __len__(self):
return self.len
class DoublePrecisionBoringModel(BoringModel):
def training_step(self, batch, batch_idx):
float_data, int_data = batch
assert torch.tensor([0.]).dtype == torch.float64
assert torch.tensor([0.], dtype=torch.float16).dtype == torch.float16
assert float_data.dtype == torch.float64
output = self(float_data)
loss = self.loss(batch, output)
return {"loss": loss}
def training_epoch_end(self, outputs) -> None:
assert torch.tensor([0.]).dtype == torch.float32
return super().training_epoch_end(outputs)
def validation_step(self, batch, batch_idx):
assert batch.dtype == torch.float64
assert torch.tensor([0.]).dtype == torch.float64
assert torch.tensor([0.], dtype=torch.float16).dtype == torch.float16
output = self(batch)
loss = self.loss(batch, output)
return {"x": loss}
def test_step(self, batch, batch_idx):
assert batch.dtype == torch.float64
assert torch.tensor([0.]).dtype == torch.float64
assert torch.tensor([0.], dtype=torch.float16).dtype == torch.float16
output = self(batch)
loss = self.loss(batch, output)
return {"y": loss}
def predict_step(self, batch, batch_idx, dataloader_idx=None):
assert batch.dtype == torch.float64
assert torch.tensor([0.]).dtype == torch.float64
assert torch.tensor([0.], dtype=torch.float16).dtype == torch.float16
return self(batch)
def on_fit_start(self):
assert self.layer.weight.dtype == torch.float64
def on_after_backward(self):
assert self.layer.weight.grad.dtype == torch.float64
def train_dataloader(self):
dataset = RandomFloatIntDataset(32, 64)
assert dataset.float_data.dtype == torch.float32 # Don't start with double data
return DataLoader(dataset)
def predict_dataloader(self):
return DataLoader(RandomDataset(32, 64))
class DoublePrecisionBoringModelNoForward(BoringModel):
def training_step(self, batch, batch_idx):
assert batch.dtype == torch.float64
output = self.layer(batch)
assert output.dtype == torch.float64
loss = self.loss(batch, output)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
assert batch.dtype == torch.float64
output = self.layer(batch)
assert output.dtype == torch.float64
loss = self.loss(batch, output)
return {"x": loss}
def test_step(self, batch, batch_idx):
assert batch.dtype == torch.float64
output = self.layer(batch)
assert output.dtype == torch.float64
loss = self.loss(batch, output)
return {"y": loss}
def predict_step(self, batch, batch_idx, dataloader_idx=None):
assert batch.dtype == torch.float64
output = self.layer(batch)
assert output.dtype == torch.float64
return output
def predict_dataloader(self):
return DataLoader(RandomDataset(32, 64))
@pytest.mark.parametrize('boring_model', (DoublePrecisionBoringModel, DoublePrecisionBoringModelNoForward))
def test_double_precision(tmpdir, boring_model):
model = boring_model()
original_training_step = model.training_step
trainer = Trainer(
max_epochs=2,
default_root_dir=tmpdir,
fast_dev_run=2,
precision=64,
log_every_n_steps=1,
)
trainer.fit(model)
trainer.test(model)
trainer.predict(model)
assert model.training_step == original_training_step