lightning/pytorch_lightning/loggers/wandb.py

282 lines
11 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Weights and Biases Logger
-------------------------
"""
import operator
import os
from argparse import Namespace
from pathlib import Path
from typing import Any, Dict, Optional, Union
from weakref import ReferenceType
import torch.nn as nn
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment
from pytorch_lightning.utilities import _module_available, rank_zero_only
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _compare_version
from pytorch_lightning.utilities.warnings import WarningCache
warning_cache = WarningCache()
_WANDB_AVAILABLE = _module_available("wandb")
_WANDB_GREATER_EQUAL_0_10_22 = _compare_version("wandb", operator.ge, "0.10.22")
try:
import wandb
from wandb.wandb_run import Run
except ImportError:
# needed for test mocks, these tests shall be updated
wandb, Run = None, None
class WandbLogger(LightningLoggerBase):
r"""
Log using `Weights and Biases <https://docs.wandb.ai/integrations/lightning>`_.
Install it with pip:
.. code-block:: bash
pip install wandb
Args:
name: Display name for the run.
save_dir: Path where data is saved (wandb dir by default).
offline: Run offline (data can be streamed later to wandb servers).
id: Sets the version, mainly used to resume a previous run.
version: Same as id.
anonymous: Enables or explicitly disables anonymous logging.
project: The name of the project to which this run will belong.
log_model: Log checkpoints created by :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint`
as W&B artifacts.
* if ``log_model == 'all'``, checkpoints are logged during training.
* if ``log_model == True``, checkpoints are logged at the end of training, except when
:paramref:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint.save_top_k` ``== -1``
which also logs every checkpoint during training.
* if ``log_model == False`` (default), no checkpoint is logged.
prefix: A string to put at the beginning of metric keys.
experiment: WandB experiment object. Automatically set when creating a run.
\**kwargs: Arguments passed to :func:`wandb.init` like `entity`, `group`, `tags`, etc.
Raises:
ImportError:
If required WandB package is not installed on the device.
MisconfigurationException:
If both ``log_model`` and ``offline``is set to ``True``.
Example::
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning import Trainer
# instrument experiment with W&B
wandb_logger = WandbLogger(project='MNIST', log_model='all')
trainer = Trainer(logger=wandb_logger)
# log gradients and model topology
wandb_logger.watch(model)
See Also:
- `Demo in Google Colab <http://wandb.me/lightning>`__ with model logging
- `W&B Documentation <https://docs.wandb.ai/integrations/lightning>`__
"""
LOGGER_JOIN_CHAR = '-'
def __init__(
self,
name: Optional[str] = None,
save_dir: Optional[str] = None,
offline: Optional[bool] = False,
id: Optional[str] = None,
anonymous: Optional[bool] = None,
version: Optional[str] = None,
project: Optional[str] = None,
log_model: Optional[bool] = False,
experiment=None,
prefix: Optional[str] = '',
sync_step: Optional[bool] = None,
**kwargs
):
if wandb is None:
raise ImportError(
'You want to use `wandb` logger which is not installed yet,' # pragma: no-cover
' install it with `pip install wandb`.'
)
if offline and log_model:
raise MisconfigurationException(
f'Providing log_model={log_model} and offline={offline} is an invalid configuration'
' since model checkpoints cannot be uploaded in offline mode.\n'
'Hint: Set `offline=False` to log your model.'
)
if log_model and not _WANDB_GREATER_EQUAL_0_10_22:
warning_cache.warn(
f'Providing log_model={log_model} requires wandb version >= 0.10.22'
' for logging associated model metadata.\n'
'Hint: Upgrade with `pip install --ugrade wandb`.'
)
if sync_step is not None:
warning_cache.warn(
"`WandbLogger(sync_step=(True|False))` is deprecated in v1.2.1 and will be removed in v1.5."
" Metrics are now logged separately and automatically synchronized.", DeprecationWarning
)
super().__init__()
self._offline = offline
self._log_model = log_model
self._prefix = prefix
self._experiment = experiment
self._logged_model_time = {}
self._checkpoint_callback = None
# set wandb init arguments
anonymous_lut = {True: 'allow', False: None}
self._wandb_init = dict(
name=name,
project=project,
id=version or id,
dir=save_dir,
resume='allow',
anonymous=anonymous_lut.get(anonymous, anonymous)
)
self._wandb_init.update(**kwargs)
# extract parameters
self._save_dir = self._wandb_init.get('dir')
self._name = self._wandb_init.get('name')
self._id = self._wandb_init.get('id')
def __getstate__(self):
state = self.__dict__.copy()
# args needed to reload correct experiment
state['_id'] = self._experiment.id if self._experiment is not None else None
# cannot be pickled
state['_experiment'] = None
return state
@property
@rank_zero_experiment
def experiment(self) -> Run:
r"""
Actual wandb object. To use wandb features in your
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
Example::
self.logger.experiment.some_wandb_function()
"""
if self._experiment is None:
if self._offline:
os.environ['WANDB_MODE'] = 'dryrun'
self._experiment = wandb.init(**self._wandb_init) if wandb.run is None else wandb.run
# define default x-axis (for latest wandb versions)
if getattr(self._experiment, "define_metric", None):
self._experiment.define_metric("trainer/global_step")
self._experiment.define_metric("*", step_metric='trainer/global_step', step_sync=True)
return self._experiment
def watch(self, model: nn.Module, log: str = 'gradients', log_freq: int = 100):
self.experiment.watch(model, log=log, log_freq=log_freq)
@rank_zero_only
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
params = self._convert_params(params)
params = self._flatten_dict(params)
params = self._sanitize_callable_params(params)
self.experiment.config.update(params, allow_val_change=True)
@rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
assert rank_zero_only.rank == 0, 'experiment tried to log from global_rank != 0'
metrics = self._add_prefix(metrics)
if step is not None:
self.experiment.log({**metrics, 'trainer/global_step': step})
else:
self.experiment.log(metrics)
@property
def save_dir(self) -> Optional[str]:
return self._save_dir
@property
def name(self) -> Optional[str]:
# don't create an experiment if we don't have one
return self._experiment.project_name() if self._experiment else self._name
@property
def version(self) -> Optional[str]:
# don't create an experiment if we don't have one
return self._experiment.id if self._experiment else self._id
def after_save_checkpoint(self, checkpoint_callback: 'ReferenceType[ModelCheckpoint]') -> None:
# log checkpoints as artifacts
if self._log_model == 'all' or self._log_model is True and checkpoint_callback.save_top_k == -1:
self._scan_and_log_checkpoints(checkpoint_callback)
elif self._log_model is True:
self._checkpoint_callback = checkpoint_callback
@rank_zero_only
def finalize(self, status: str) -> None:
# log checkpoints as artifacts
if self._checkpoint_callback:
self._scan_and_log_checkpoints(self._checkpoint_callback)
def _scan_and_log_checkpoints(self, checkpoint_callback: 'ReferenceType[ModelCheckpoint]') -> None:
# get checkpoints to be saved with associated score
checkpoints = {
checkpoint_callback.last_model_path: checkpoint_callback.current_score,
checkpoint_callback.best_model_path: checkpoint_callback.best_model_score,
**checkpoint_callback.best_k_models
}
checkpoints = sorted([(Path(p).stat().st_mtime, p, s) for p, s in checkpoints.items() if Path(p).is_file()])
checkpoints = [
c for c in checkpoints if c[1] not in self._logged_model_time.keys() or self._logged_model_time[c[1]] < c[0]
]
# log iteratively all new checkpoints
for t, p, s in checkpoints:
metadata = {
'score': s,
'original_filename': Path(p).name,
'ModelCheckpoint': {
k: getattr(checkpoint_callback, k)
for k in [
'monitor', 'mode', 'save_last', 'save_top_k', 'save_weights_only', '_every_n_train_steps',
'_every_n_val_epochs'
]
# ensure it does not break if `ModelCheckpoint` args change
if hasattr(checkpoint_callback, k)
}
} if _WANDB_GREATER_EQUAL_0_10_22 else None
artifact = wandb.Artifact(name=f"model-{self.experiment.id}", type="model", metadata=metadata)
artifact.add_file(p, name='model.ckpt')
aliases = ["latest", "best"] if p == checkpoint_callback.best_model_path else ["latest"]
self.experiment.log_artifact(artifact, aliases=aliases)
# remember logged models - timestamp needed in case filename didn't change (lastkckpt or custom name)
self._logged_model_time[p] = t