200 lines
8.5 KiB
Python
200 lines
8.5 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any, Dict, Optional, Union
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.trainer.states import TrainerStatus
|
|
from pytorch_lightning.tuner.batch_size_scaling import scale_batch_size
|
|
from pytorch_lightning.tuner.lr_finder import _LRFinder, lr_find
|
|
from pytorch_lightning.utilities.types import EVAL_DATALOADERS, TRAIN_DATALOADERS
|
|
|
|
|
|
class Tuner:
|
|
"""Tuner class to tune your model."""
|
|
|
|
def __init__(self, trainer: "pl.Trainer") -> None:
|
|
self.trainer = trainer
|
|
|
|
def on_trainer_init(self, auto_lr_find: Union[str, bool], auto_scale_batch_size: Union[str, bool]) -> None:
|
|
self.trainer.auto_lr_find = auto_lr_find
|
|
self.trainer.auto_scale_batch_size = auto_scale_batch_size
|
|
|
|
def _tune(
|
|
self,
|
|
model: "pl.LightningModule",
|
|
scale_batch_size_kwargs: Optional[Dict[str, Any]] = None,
|
|
lr_find_kwargs: Optional[Dict[str, Any]] = None,
|
|
) -> Dict[str, Optional[Union[int, _LRFinder]]]:
|
|
scale_batch_size_kwargs = scale_batch_size_kwargs or {}
|
|
lr_find_kwargs = lr_find_kwargs or {}
|
|
# return a dict instead of a tuple so BC is not broken if a new tuning procedure is added
|
|
result = {}
|
|
|
|
self.trainer.strategy.connect(model)
|
|
|
|
# Run auto batch size scaling
|
|
if self.trainer.auto_scale_batch_size:
|
|
if isinstance(self.trainer.auto_scale_batch_size, str):
|
|
scale_batch_size_kwargs.setdefault("mode", self.trainer.auto_scale_batch_size)
|
|
result["scale_batch_size"] = scale_batch_size(self.trainer, model, **scale_batch_size_kwargs)
|
|
|
|
# Run learning rate finder:
|
|
if self.trainer.auto_lr_find:
|
|
lr_find_kwargs.setdefault("update_attr", True)
|
|
result["lr_find"] = lr_find(self.trainer, model, **lr_find_kwargs)
|
|
|
|
self.trainer.state.status = TrainerStatus.FINISHED
|
|
|
|
return result
|
|
|
|
def _run(self, *args: Any, **kwargs: Any) -> None:
|
|
"""`_run` wrapper to set the proper state during tuning, as this can be called multiple times."""
|
|
self.trainer.state.status = TrainerStatus.RUNNING # last `_run` call might have set it to `FINISHED`
|
|
self.trainer.training = True
|
|
self.trainer._run(*args, **kwargs)
|
|
self.trainer.tuning = True
|
|
|
|
def scale_batch_size(
|
|
self,
|
|
model: "pl.LightningModule",
|
|
train_dataloaders: Optional[Union[TRAIN_DATALOADERS, "pl.LightningDataModule"]] = None,
|
|
val_dataloaders: Optional[EVAL_DATALOADERS] = None,
|
|
datamodule: Optional["pl.LightningDataModule"] = None,
|
|
mode: str = "power",
|
|
steps_per_trial: int = 3,
|
|
init_val: int = 2,
|
|
max_trials: int = 25,
|
|
batch_arg_name: str = "batch_size",
|
|
) -> Optional[int]:
|
|
"""Iteratively try to find the largest batch size for a given model that does not give an out of memory
|
|
(OOM) error.
|
|
|
|
Args:
|
|
model: Model to tune.
|
|
|
|
train_dataloaders: A collection of :class:`torch.utils.data.DataLoader` or a
|
|
:class:`~pytorch_lightning.core.datamodule.LightningDataModule` specifying training samples.
|
|
In the case of multiple dataloaders, please see this :ref:`section <multiple-dataloaders>`.
|
|
|
|
val_dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying validation samples.
|
|
|
|
datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`.
|
|
|
|
mode: Search strategy to update the batch size:
|
|
|
|
- ``'power'`` (default): Keep multiplying the batch size by 2, until we get an OOM error.
|
|
- ``'binsearch'``: Initially keep multiplying by 2 and after encountering an OOM error
|
|
do a binary search between the last successful batch size and the batch size that failed.
|
|
|
|
steps_per_trial: number of steps to run with a given batch size.
|
|
Ideally 1 should be enough to test if a OOM error occurs,
|
|
however in practise a few are needed
|
|
|
|
init_val: initial batch size to start the search with
|
|
|
|
max_trials: max number of increase in batch size done before
|
|
algorithm is terminated
|
|
|
|
batch_arg_name: name of the attribute that stores the batch size.
|
|
It is expected that the user has provided a model or datamodule that has a hyperparameter
|
|
with that name. We will look for this attribute name in the following places
|
|
|
|
- ``model``
|
|
- ``model.hparams``
|
|
- ``trainer.datamodule`` (the datamodule passed to the tune method)
|
|
"""
|
|
self.trainer.auto_scale_batch_size = True
|
|
result = self.trainer.tune(
|
|
model,
|
|
train_dataloaders=train_dataloaders,
|
|
val_dataloaders=val_dataloaders,
|
|
datamodule=datamodule,
|
|
scale_batch_size_kwargs={
|
|
"mode": mode,
|
|
"steps_per_trial": steps_per_trial,
|
|
"init_val": init_val,
|
|
"max_trials": max_trials,
|
|
"batch_arg_name": batch_arg_name,
|
|
},
|
|
)
|
|
self.trainer.auto_scale_batch_size = False
|
|
return result["scale_batch_size"]
|
|
|
|
def lr_find(
|
|
self,
|
|
model: "pl.LightningModule",
|
|
train_dataloaders: Optional[Union[TRAIN_DATALOADERS, "pl.LightningDataModule"]] = None,
|
|
val_dataloaders: Optional[EVAL_DATALOADERS] = None,
|
|
datamodule: Optional["pl.LightningDataModule"] = None,
|
|
min_lr: float = 1e-8,
|
|
max_lr: float = 1,
|
|
num_training: int = 100,
|
|
mode: str = "exponential",
|
|
early_stop_threshold: float = 4.0,
|
|
update_attr: bool = False,
|
|
) -> Optional[_LRFinder]:
|
|
"""Enables the user to do a range test of good initial learning rates, to reduce the amount of guesswork in
|
|
picking a good starting learning rate.
|
|
|
|
Args:
|
|
model: Model to tune.
|
|
|
|
train_dataloaders: A collection of :class:`torch.utils.data.DataLoader` or a
|
|
:class:`~pytorch_lightning.core.datamodule.LightningDataModule` specifying training samples.
|
|
In the case of multiple dataloaders, please see this :ref:`section <multiple-dataloaders>`.
|
|
|
|
val_dataloaders: A :class:`torch.utils.data.DataLoader` or a sequence of them specifying validation samples.
|
|
|
|
datamodule: An instance of :class:`~pytorch_lightning.core.datamodule.LightningDataModule`.
|
|
|
|
min_lr: minimum learning rate to investigate
|
|
|
|
max_lr: maximum learning rate to investigate
|
|
|
|
num_training: number of learning rates to test
|
|
|
|
mode: Search strategy to update learning rate after each batch:
|
|
|
|
- ``'exponential'`` (default): Will increase the learning rate exponentially.
|
|
- ``'linear'``: Will increase the learning rate linearly.
|
|
|
|
early_stop_threshold: threshold for stopping the search. If the
|
|
loss at any point is larger than early_stop_threshold*best_loss
|
|
then the search is stopped. To disable, set to None.
|
|
|
|
update_attr: Whether to update the learning rate attribute or not.
|
|
|
|
Raises:
|
|
MisconfigurationException:
|
|
If learning rate/lr in ``model`` or ``model.hparams`` isn't overridden when ``auto_lr_find=True``,
|
|
or if you are using more than one optimizer.
|
|
"""
|
|
self.trainer.auto_lr_find = True
|
|
result = self.trainer.tune(
|
|
model,
|
|
train_dataloaders=train_dataloaders,
|
|
val_dataloaders=val_dataloaders,
|
|
datamodule=datamodule,
|
|
lr_find_kwargs={
|
|
"min_lr": min_lr,
|
|
"max_lr": max_lr,
|
|
"num_training": num_training,
|
|
"mode": mode,
|
|
"early_stop_threshold": early_stop_threshold,
|
|
"update_attr": update_attr,
|
|
},
|
|
)
|
|
self.trainer.auto_lr_find = False
|
|
return result["lr_find"]
|