lightning/tests/models/utils.py

220 lines
6.9 KiB
Python

import os
import warnings
from argparse import Namespace
import numpy as np
import torch
from pl_examples import LightningTemplateModel
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TestTubeLogger, TensorBoardLogger
from tests.models import LightningTestModel
# generate a list of random seeds for each test
RANDOM_PORTS = list(np.random.randint(12000, 19000, 1000))
ROOT_SEED = 1234
torch.manual_seed(ROOT_SEED)
np.random.seed(ROOT_SEED)
RANDOM_SEEDS = list(np.random.randint(0, 10000, 1000))
ROOT_PATH = os.path.abspath(os.path.dirname(__file__))
def run_model_test_no_loggers(trainer_options, model, min_acc=0.50):
save_dir = trainer_options['default_save_path']
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'amp + ddp model failed to complete'
# test model loading
pretrained_model = load_model(trainer.logger,
trainer.checkpoint_callback.filepath,
path_expt=trainer_options.get('default_save_path'))
# test new model accuracy
for dataloader in model.test_dataloader():
run_prediction(dataloader, pretrained_model, min_acc=min_acc)
if trainer.use_ddp:
# on hpc this would work fine... but need to hack it for the purpose of the test
trainer.model = pretrained_model
trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers()
def run_model_test(trainer_options, model, on_gpu=True):
save_dir = trainer_options['default_save_path']
# logger file to get meta
logger = get_test_tube_logger(save_dir, False)
# logger file to get weights
checkpoint = init_checkpoint_callback(logger)
# add these to the trainer options
trainer_options['checkpoint_callback'] = checkpoint
trainer_options['logger'] = logger
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'amp + ddp model failed to complete'
# test model loading
pretrained_model = load_model(logger, trainer.checkpoint_callback.filepath)
# test new model accuracy
[run_prediction(dataloader, pretrained_model) for dataloader in model.test_dataloader()]
if trainer.use_ddp or trainer.use_ddp2:
# on hpc this would work fine... but need to hack it for the purpose of the test
trainer.model = pretrained_model
trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers()
# test HPC loading / saving
trainer.hpc_save(save_dir, logger)
trainer.hpc_load(save_dir, on_gpu=on_gpu)
def get_hparams(continue_training=False, hpc_exp_number=0):
root_dir = os.path.dirname(os.path.realpath(__file__))
args = {
'drop_prob': 0.2,
'batch_size': 32,
'in_features': 28 * 28,
'learning_rate': 0.001 * 8,
'optimizer_name': 'adam',
'data_root': os.path.join(root_dir, 'mnist'),
'out_features': 10,
'hidden_dim': 1000,
}
if continue_training:
args['test_tube_do_checkpoint_load'] = True
args['hpc_exp_number'] = hpc_exp_number
hparams = Namespace(**args)
return hparams
def get_model(use_test_model=False, lbfgs=False):
# set up model with these hyperparams
hparams = get_hparams()
if lbfgs:
setattr(hparams, 'optimizer_name', 'lbfgs')
setattr(hparams, 'learning_rate', 0.002)
if use_test_model:
model = LightningTestModel(hparams)
else:
model = LightningTemplateModel(hparams)
return model, hparams
def get_test_tube_logger(save_dir, debug=True, version=None):
# set up logger object without actually saving logs
logger = TestTubeLogger(save_dir, name='lightning_logs', debug=debug, version=version)
return logger
def get_data_path(expt_logger, path_dir=None):
# some calls contain only experiment not complete logger
expt = expt_logger.experiment if hasattr(expt_logger, 'experiment') else expt_logger
# each logger has to have these attributes
name, version = expt_logger.name, expt_logger.version
# only the test-tube experiment has such attribute
if hasattr(expt, 'get_data_path'):
return expt.get_data_path(name, version)
# the other experiments...
if not path_dir:
path_dir = ROOT_PATH
path_expt = os.path.join(path_dir, name, 'version_%s' % version)
# try if the new sub-folder exists, typical case for test-tube
if not os.path.isdir(path_expt):
path_expt = path_dir
return path_expt
def load_model(exp, root_weights_dir, module_class=LightningTemplateModel, path_expt=None):
# load trained model
path_expt_dir = get_data_path(exp, path_dir=path_expt)
tags_path = os.path.join(path_expt_dir, TensorBoardLogger.NAME_CSV_TAGS)
checkpoints = [x for x in os.listdir(root_weights_dir) if '.ckpt' in x]
weights_dir = os.path.join(root_weights_dir, checkpoints[0])
trained_model = module_class.load_from_metrics(weights_path=weights_dir,
tags_csv=tags_path)
assert trained_model is not None, 'loading model failed'
return trained_model
def run_prediction(dataloader, trained_model, dp=False, min_acc=0.50):
# run prediction on 1 batch
for batch in dataloader:
break
x, y = batch
x = x.view(x.size(0), -1)
if dp:
output = trained_model(batch, 0)
acc = output['val_acc']
acc = torch.mean(acc).item()
else:
y_hat = trained_model(x)
# acc
labels_hat = torch.argmax(y_hat, dim=1)
acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
acc = torch.tensor(acc)
acc = acc.item()
assert acc > min_acc, f'this model is expected to get > {min_acc} in test set (it got {acc})'
def assert_ok_model_acc(trainer, key='test_acc', thr=0.4):
# this model should get 0.80+ acc
acc = trainer.training_tqdm_dict[key]
assert acc > thr, f'Model failed to get expected {thr} accuracy. {key} = {acc}'
def can_run_gpu_test():
if not torch.cuda.is_available():
warnings.warn('test_multi_gpu_model_ddp cannot run.'
' Rerun on a GPU node to run this test')
return False
if not torch.cuda.device_count() > 1:
warnings.warn('test_multi_gpu_model_ddp cannot run.'
' Rerun on a node with 2+ GPUs to run this test')
return False
return True
def reset_seed():
seed = RANDOM_SEEDS.pop()
torch.manual_seed(seed)
np.random.seed(seed)
def set_random_master_port():
port = RANDOM_PORTS.pop()
os.environ['MASTER_PORT'] = str(port)
def init_checkpoint_callback(logger, path_dir=None):
exp_path = get_data_path(logger, path_dir=path_dir)
ckpt_dir = os.path.join(exp_path, 'checkpoints')
checkpoint = ModelCheckpoint(ckpt_dir)
return checkpoint