lightning/tests
Vadim Bereznyuk edd4a87fb0
Refactor callbacks (#776)
* Refactor callbacks

* flake8

* Update docstrings

* Simplified callback, protected trainer

* .set_trainer() check

* update docs

* missed super().__ini__()

* Updated tests

* Use uppercase

* refine checkpoint callback tests

* Added test_begin() and test_end()
2020-02-16 00:03:05 -05:00
..
models drop torchvision, tests only (#797) 2020-02-10 22:47:18 -05:00
README.md update org paths & convert logos (#685) 2020-01-20 14:50:31 -05:00
__init__.py added init to test folder 2019-07-24 21:32:31 -04:00
conftest.py Fix amp tests (#661) 2020-01-05 14:34:25 -05:00
requirements.txt add autopep8 to Contributions guide (#852) 2020-02-15 20:24:38 -05:00
test_amp.py drop torchvision, tests only (#797) 2020-02-10 22:47:18 -05:00
test_cpu_models.py drop torchvision, tests only (#797) 2020-02-10 22:47:18 -05:00
test_gpu_models.py drop torchvision, tests only (#797) 2020-02-10 22:47:18 -05:00
test_logging.py Allow user to specify 'step' key while logging metrics (#808) 2020-02-15 23:35:23 -05:00
test_profiler.py advanced profiler describe + cleaned up tests (#837) 2020-02-15 23:43:43 -05:00
test_restore_models.py drop torchvision, tests only (#797) 2020-02-10 22:47:18 -05:00
test_trainer.py Refactor callbacks (#776) 2020-02-16 00:03:05 -05:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install module locally
pip install -e .

# install dev deps
pip install -r requirements.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage 
pip install coverage
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v --doctest-modules

# print coverage stats
coverage report -m

# exporting resulys
coverage xml
codecov -t 17327163-8cca-4a5d-86c8-ca5f2ef700bc  -v