69 lines
2.4 KiB
Python
69 lines
2.4 KiB
Python
import os
|
|
from pathlib import Path
|
|
from typing import Any, Dict, Union
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.accelerators import CPUAccelerator
|
|
from pytorch_lightning.plugins.io.torch_plugin import TorchCheckpointIO
|
|
from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin
|
|
from pytorch_lightning.strategies import SingleDeviceStrategy
|
|
from tests.helpers.boring_model import BoringModel
|
|
|
|
|
|
def test_restore_checkpoint_after_pre_setup_default():
|
|
"""Assert default for restore_checkpoint_after_setup is False."""
|
|
plugin = SingleDeviceStrategy(
|
|
accelerator=CPUAccelerator(), device=torch.device("cpu"), precision_plugin=PrecisionPlugin()
|
|
)
|
|
assert not plugin.restore_checkpoint_after_setup
|
|
|
|
|
|
def test_availability():
|
|
assert CPUAccelerator.is_available()
|
|
|
|
|
|
@pytest.mark.parametrize("restore_after_pre_setup", [True, False])
|
|
def test_restore_checkpoint_after_pre_setup(tmpdir, restore_after_pre_setup):
|
|
"""Test to ensure that if restore_checkpoint_after_setup is True, then we only load the state after pre-
|
|
dispatch is called."""
|
|
|
|
class TestPlugin(SingleDeviceStrategy):
|
|
setup_called = False
|
|
|
|
def setup(self, trainer: "pl.Trainer") -> None:
|
|
super().setup(trainer)
|
|
self.setup_called = True
|
|
|
|
@property
|
|
def restore_checkpoint_after_setup(self) -> bool:
|
|
return restore_after_pre_setup
|
|
|
|
def load_checkpoint(self, checkpoint_path: Union[str, Path]) -> Dict[str, Any]:
|
|
assert self.setup_called == restore_after_pre_setup
|
|
return super().load_checkpoint(checkpoint_path)
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
|
|
trainer.fit(model)
|
|
|
|
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
|
trainer.save_checkpoint(checkpoint_path)
|
|
|
|
plugin = TestPlugin(
|
|
accelerator=CPUAccelerator(),
|
|
precision_plugin=PrecisionPlugin(),
|
|
device=torch.device("cpu"),
|
|
checkpoint_io=TorchCheckpointIO(),
|
|
)
|
|
assert plugin.restore_checkpoint_after_setup == restore_after_pre_setup
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, strategy=plugin, fast_dev_run=True)
|
|
trainer.fit(model, ckpt_path=checkpoint_path)
|
|
for func in (trainer.test, trainer.validate, trainer.predict):
|
|
plugin.setup_called = False
|
|
func(model, ckpt_path=checkpoint_path)
|