599 lines
23 KiB
Python
599 lines
23 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import functools
|
|
import inspect
|
|
from abc import ABC, abstractmethod
|
|
from collections.abc import Sequence
|
|
from copy import deepcopy
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from pytorch_lightning.metrics.utils import _flatten, dim_zero_cat, dim_zero_mean, dim_zero_sum
|
|
from pytorch_lightning.utilities.apply_func import apply_to_collection
|
|
from pytorch_lightning.utilities.distributed import gather_all_tensors
|
|
|
|
|
|
class Metric(nn.Module, ABC):
|
|
"""
|
|
Base class for all metrics present in the Metrics API.
|
|
|
|
Implements ``add_state()``, ``forward()``, ``reset()`` and a few other things to
|
|
handle distributed synchronization and per-step metric computation.
|
|
|
|
Override ``update()`` and ``compute()`` functions to implement your own metric. Use
|
|
``add_state()`` to register metric state variables which keep track of state on each
|
|
call of ``update()`` and are synchronized across processes when ``compute()`` is called.
|
|
|
|
Note:
|
|
Metric state variables can either be ``torch.Tensors`` or an empty list which can we used
|
|
to store `torch.Tensors``.
|
|
|
|
Note:
|
|
Different metrics only override ``update()`` and not ``forward()``. A call to ``update()``
|
|
is valid, but it won't return the metric value at the current step. A call to ``forward()``
|
|
automatically calls ``update()`` and also returns the metric value at the current step.
|
|
|
|
Args:
|
|
compute_on_step:
|
|
Forward only calls ``update()`` and returns None if this is set to False. default: True
|
|
dist_sync_on_step:
|
|
Synchronize metric state across processes at each ``forward()``
|
|
before returning the value at the step.
|
|
process_group:
|
|
Specify the process group on which synchronization is called. default: None (which selects the entire world)
|
|
dist_sync_fn:
|
|
Callback that performs the allgather operation on the metric state. When `None`, DDP
|
|
will be used to perform the allgather. default: None
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
compute_on_step: bool = True,
|
|
dist_sync_on_step: bool = False,
|
|
process_group: Optional[Any] = None,
|
|
dist_sync_fn: Callable = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.dist_sync_on_step = dist_sync_on_step
|
|
self.compute_on_step = compute_on_step
|
|
self.process_group = process_group
|
|
self.dist_sync_fn = dist_sync_fn
|
|
self._to_sync = True
|
|
|
|
self._update_signature = inspect.signature(self.update)
|
|
self.update = self._wrap_update(self.update)
|
|
self.compute = self._wrap_compute(self.compute)
|
|
self._computed = None
|
|
self._forward_cache = None
|
|
|
|
# initialize state
|
|
self._defaults = {}
|
|
self._persistent = {}
|
|
self._reductions = {}
|
|
|
|
def add_state(
|
|
self, name: str, default, dist_reduce_fx: Optional[Union[str, Callable]] = None, persistent: bool = False
|
|
):
|
|
"""
|
|
Adds metric state variable. Only used by subclasses.
|
|
|
|
Args:
|
|
name: The name of the state variable. The variable will then be accessible at ``self.name``.
|
|
default: Default value of the state; can either be a ``torch.Tensor`` or an empty list. The state will be
|
|
reset to this value when ``self.reset()`` is called.
|
|
dist_reduce_fx (Optional): Function to reduce state accross mutliple processes in distributed mode.
|
|
If value is ``"sum"``, ``"mean"``, or ``"cat"``, we will use ``torch.sum``, ``torch.mean``,
|
|
and ``torch.cat`` respectively, each with argument ``dim=0``. Note that the ``"cat"`` reduction
|
|
only makes sense if the state is a list, and not a tensor. The user can also pass a custom
|
|
function in this parameter.
|
|
persistent (Optional): whether the state will be saved as part of the modules ``state_dict``.
|
|
Default is ``False``.
|
|
|
|
Note:
|
|
Setting ``dist_reduce_fx`` to None will return the metric state synchronized across different processes.
|
|
However, there won't be any reduction function applied to the synchronized metric state.
|
|
|
|
The metric states would be synced as follows
|
|
|
|
- If the metric state is ``torch.Tensor``, the synced value will be a stacked ``torch.Tensor`` across
|
|
the process dimension if the metric state was a ``torch.Tensor``. The original ``torch.Tensor`` metric
|
|
state retains dimension and hence the synchronized output will be of shape ``(num_process, ...)``.
|
|
|
|
- If the metric state is a ``list``, the synced value will be a ``list`` containing the
|
|
combined elements from all processes.
|
|
|
|
Note:
|
|
When passing a custom function to ``dist_reduce_fx``, expect the synchronized metric state to follow
|
|
the format discussed in the above note.
|
|
|
|
"""
|
|
if (
|
|
not isinstance(default, torch.Tensor)
|
|
and not isinstance(default, list) # noqa: W503
|
|
or (isinstance(default, list) and len(default) != 0) # noqa: W503
|
|
):
|
|
raise ValueError("state variable must be a tensor or any empty list (where you can append tensors)")
|
|
|
|
if dist_reduce_fx == "sum":
|
|
dist_reduce_fx = dim_zero_sum
|
|
elif dist_reduce_fx == "mean":
|
|
dist_reduce_fx = dim_zero_mean
|
|
elif dist_reduce_fx == "cat":
|
|
dist_reduce_fx = dim_zero_cat
|
|
elif dist_reduce_fx is not None and not isinstance(dist_reduce_fx, Callable):
|
|
raise ValueError("`dist_reduce_fx` must be callable or one of ['mean', 'sum', 'cat', None]")
|
|
|
|
setattr(self, name, default)
|
|
|
|
self._defaults[name] = deepcopy(default)
|
|
self._persistent[name] = persistent
|
|
self._reductions[name] = dist_reduce_fx
|
|
|
|
@torch.jit.unused
|
|
def forward(self, *args, **kwargs):
|
|
"""
|
|
Automatically calls ``update()``. Returns the metric value over inputs if ``compute_on_step`` is True.
|
|
"""
|
|
# add current step
|
|
with torch.no_grad():
|
|
self.update(*args, **kwargs)
|
|
self._forward_cache = None
|
|
|
|
if self.compute_on_step:
|
|
self._to_sync = self.dist_sync_on_step
|
|
|
|
# save context before switch
|
|
cache = {attr: getattr(self, attr) for attr in self._defaults.keys()}
|
|
|
|
# call reset, update, compute, on single batch
|
|
self.reset()
|
|
self.update(*args, **kwargs)
|
|
self._forward_cache = self.compute()
|
|
|
|
# restore context
|
|
for attr, val in cache.items():
|
|
setattr(self, attr, val)
|
|
self._to_sync = True
|
|
self._computed = None
|
|
|
|
return self._forward_cache
|
|
|
|
def _sync_dist(self, dist_sync_fn=gather_all_tensors):
|
|
input_dict = {attr: getattr(self, attr) for attr in self._reductions.keys()}
|
|
output_dict = apply_to_collection(
|
|
input_dict,
|
|
torch.Tensor,
|
|
dist_sync_fn,
|
|
group=self.process_group,
|
|
)
|
|
|
|
for attr, reduction_fn in self._reductions.items():
|
|
# pre-processing ops (stack or flatten for inputs)
|
|
if isinstance(output_dict[attr][0], torch.Tensor):
|
|
output_dict[attr] = torch.stack(output_dict[attr])
|
|
elif isinstance(output_dict[attr][0], list):
|
|
output_dict[attr] = _flatten(output_dict[attr])
|
|
|
|
assert isinstance(reduction_fn, (Callable)) or reduction_fn is None
|
|
reduced = reduction_fn(output_dict[attr]) if reduction_fn is not None else output_dict[attr]
|
|
setattr(self, attr, reduced)
|
|
|
|
def _wrap_update(self, update):
|
|
@functools.wraps(update)
|
|
def wrapped_func(*args, **kwargs):
|
|
self._computed = None
|
|
return update(*args, **kwargs)
|
|
|
|
return wrapped_func
|
|
|
|
def _wrap_compute(self, compute):
|
|
@functools.wraps(compute)
|
|
def wrapped_func(*args, **kwargs):
|
|
# return cached value
|
|
if self._computed is not None:
|
|
return self._computed
|
|
|
|
dist_sync_fn = self.dist_sync_fn
|
|
if dist_sync_fn is None and torch.distributed.is_available() and torch.distributed.is_initialized():
|
|
# User provided a bool, so we assume DDP if available
|
|
dist_sync_fn = gather_all_tensors
|
|
|
|
synced = False
|
|
if self._to_sync and dist_sync_fn is not None:
|
|
# cache prior to syncing
|
|
cache = {attr: getattr(self, attr) for attr in self._defaults.keys()}
|
|
|
|
# sync
|
|
self._sync_dist(dist_sync_fn)
|
|
synced = True
|
|
|
|
self._computed = compute(*args, **kwargs)
|
|
if synced:
|
|
# if we synced, restore to cache so that we can continue to accumulate un-synced state
|
|
for attr, val in cache.items():
|
|
setattr(self, attr, val)
|
|
|
|
return self._computed
|
|
|
|
return wrapped_func
|
|
|
|
@abstractmethod
|
|
def update(self) -> None: # pylint: disable=E0202
|
|
"""
|
|
Override this method to update the state variables of your metric class.
|
|
"""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def compute(self): # pylint: disable=E0202
|
|
"""
|
|
Override this method to compute the final metric value from state variables
|
|
synchronized across the distributed backend.
|
|
"""
|
|
pass
|
|
|
|
def reset(self):
|
|
"""
|
|
This method automatically resets the metric state variables to their default value.
|
|
"""
|
|
for attr, default in self._defaults.items():
|
|
current_val = getattr(self, attr)
|
|
if isinstance(default, torch.Tensor):
|
|
setattr(self, attr, deepcopy(default).to(current_val.device))
|
|
else:
|
|
setattr(self, attr, deepcopy(default))
|
|
|
|
def clone(self):
|
|
""" Make a copy of the metric """
|
|
return deepcopy(self)
|
|
|
|
def __getstate__(self):
|
|
# ignore update and compute functions for pickling
|
|
return {k: v for k, v in self.__dict__.items() if k not in ["update", "compute"]}
|
|
|
|
def __setstate__(self, state):
|
|
# manually restore update and compute functions for pickling
|
|
self.__dict__.update(state)
|
|
self.update = self._wrap_update(self.update)
|
|
self.compute = self._wrap_compute(self.compute)
|
|
|
|
def _apply(self, fn):
|
|
"""Overwrite _apply function such that we can also move metric states
|
|
to the correct device when `.to`, `.cuda`, etc methods are called
|
|
"""
|
|
self = super()._apply(fn)
|
|
# Also apply fn to metric states
|
|
for key in self._defaults.keys():
|
|
current_val = getattr(self, key)
|
|
if isinstance(current_val, torch.Tensor):
|
|
setattr(self, key, fn(current_val))
|
|
elif isinstance(current_val, Sequence):
|
|
setattr(self, key, [fn(cur_v) for cur_v in current_val])
|
|
else:
|
|
raise TypeError(
|
|
"Expected metric state to be either a torch.Tensor"
|
|
f"or a list of torch.Tensor, but encountered {current_val}"
|
|
)
|
|
return self
|
|
|
|
def persistent(self, mode: bool = False):
|
|
"""Method for post-init to change if metric states should be saved to
|
|
its state_dict
|
|
"""
|
|
for key in self._persistent.keys():
|
|
self._persistent[key] = mode
|
|
|
|
def state_dict(self, *args, **kwargs):
|
|
# Register metric states to be part of the state_dict
|
|
state_dict = super().state_dict()
|
|
for key in self._defaults.keys():
|
|
if self._persistent[key]:
|
|
current_val = getattr(self, key)
|
|
state_dict.update({key: current_val})
|
|
return state_dict
|
|
|
|
def _filter_kwargs(self, **kwargs):
|
|
""" filter kwargs such that they match the update signature of the metric """
|
|
|
|
# filter all parameters based on update signature except those of
|
|
# type VAR_POSITIONAL (*args) and VAR_KEYWORD (**kwargs)
|
|
_params = (inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD)
|
|
filtered_kwargs = {
|
|
k: v
|
|
for k, v in kwargs.items()
|
|
if k in self._update_signature.parameters.keys()
|
|
and self._update_signature.parameters[k].kind not in _params
|
|
}
|
|
|
|
# if no kwargs filtered, return al kwargs as default
|
|
if not filtered_kwargs:
|
|
filtered_kwargs = kwargs
|
|
return filtered_kwargs
|
|
|
|
def __hash__(self):
|
|
hash_vals = [self.__class__.__name__]
|
|
|
|
for key in self._defaults.keys():
|
|
hash_vals.append(getattr(self, key))
|
|
|
|
return hash(tuple(hash_vals))
|
|
|
|
def __add__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.add, self, other)
|
|
|
|
def __and__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.bitwise_and, self, other)
|
|
|
|
def __eq__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.eq, self, other)
|
|
|
|
def __floordiv__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.floor_divide, self, other)
|
|
|
|
def __ge__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.ge, self, other)
|
|
|
|
def __gt__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.gt, self, other)
|
|
|
|
def __le__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.le, self, other)
|
|
|
|
def __lt__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.lt, self, other)
|
|
|
|
def __matmul__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.matmul, self, other)
|
|
|
|
def __mod__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.fmod, self, other)
|
|
|
|
def __mul__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.mul, self, other)
|
|
|
|
def __ne__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.ne, self, other)
|
|
|
|
def __or__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.bitwise_or, self, other)
|
|
|
|
def __pow__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.pow, self, other)
|
|
|
|
def __radd__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.add, other, self)
|
|
|
|
def __rand__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
# swap them since bitwise_and only supports that way and it's commutative
|
|
return CompositionalMetric(torch.bitwise_and, self, other)
|
|
|
|
def __rfloordiv__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.floor_divide, other, self)
|
|
|
|
def __rmatmul__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.matmul, other, self)
|
|
|
|
def __rmod__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.fmod, other, self)
|
|
|
|
def __rmul__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.mul, other, self)
|
|
|
|
def __ror__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.bitwise_or, other, self)
|
|
|
|
def __rpow__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.pow, other, self)
|
|
|
|
def __rsub__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.sub, other, self)
|
|
|
|
def __rtruediv__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.true_divide, other, self)
|
|
|
|
def __rxor__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.bitwise_xor, other, self)
|
|
|
|
def __sub__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.sub, self, other)
|
|
|
|
def __truediv__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.true_divide, self, other)
|
|
|
|
def __xor__(self, other: Any):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.bitwise_xor, self, other)
|
|
|
|
def __abs__(self):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.abs, self, None)
|
|
|
|
def __inv__(self):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.bitwise_not, self, None)
|
|
|
|
def __invert__(self):
|
|
return self.__inv__()
|
|
|
|
def __neg__(self):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(_neg, self, None)
|
|
|
|
def __pos__(self):
|
|
from pytorch_lightning.metrics.compositional import CompositionalMetric
|
|
|
|
return CompositionalMetric(torch.abs, self, None)
|
|
|
|
|
|
def _neg(tensor: torch.Tensor):
|
|
return -torch.abs(tensor)
|
|
|
|
|
|
class MetricCollection(nn.ModuleDict):
|
|
"""
|
|
MetricCollection class can be used to chain metrics that have the same
|
|
call pattern into one single class.
|
|
|
|
Args:
|
|
metrics: One of the following
|
|
|
|
* list or tuple: if metrics are passed in as a list, will use the
|
|
metrics class name as key for output dict. Therefore, two metrics
|
|
of the same class cannot be chained this way.
|
|
|
|
* dict: if metrics are passed in as a dict, will use each key in the
|
|
dict as key for output dict. Use this format if you want to chain
|
|
together multiple of the same metric with different parameters.
|
|
|
|
Example (input as list):
|
|
|
|
>>> from pytorch_lightning.metrics import MetricCollection, Accuracy, Precision, Recall
|
|
>>> target = torch.tensor([0, 2, 0, 2, 0, 1, 0, 2])
|
|
>>> preds = torch.tensor([2, 1, 2, 0, 1, 2, 2, 2])
|
|
>>> metrics = MetricCollection([Accuracy(),
|
|
... Precision(num_classes=3, average='macro'),
|
|
... Recall(num_classes=3, average='macro')])
|
|
>>> metrics(preds, target)
|
|
{'Accuracy': tensor(0.1250), 'Precision': tensor(0.0667), 'Recall': tensor(0.1111)}
|
|
|
|
Example (input as dict):
|
|
|
|
>>> metrics = MetricCollection({'micro_recall': Recall(num_classes=3, average='micro'),
|
|
... 'macro_recall': Recall(num_classes=3, average='macro')})
|
|
>>> metrics(preds, target)
|
|
{'micro_recall': tensor(0.1250), 'macro_recall': tensor(0.1111)}
|
|
|
|
"""
|
|
|
|
def __init__(self, metrics: Union[List[Metric], Tuple[Metric], Dict[str, Metric]]):
|
|
super().__init__()
|
|
if isinstance(metrics, dict):
|
|
# Check all values are metrics
|
|
for name, metric in metrics.items():
|
|
if not isinstance(metric, Metric):
|
|
raise ValueError(
|
|
f"Value {metric} belonging to key {name}" " is not an instance of `pl.metrics.Metric`"
|
|
)
|
|
self[name] = metric
|
|
elif isinstance(metrics, (tuple, list)):
|
|
for metric in metrics:
|
|
if not isinstance(metric, Metric):
|
|
raise ValueError(
|
|
f"Input {metric} to `MetricCollection` is not a instance" " of `pl.metrics.Metric`"
|
|
)
|
|
name = metric.__class__.__name__
|
|
if name in self:
|
|
raise ValueError(f"Encountered two metrics both named {name}")
|
|
self[name] = metric
|
|
else:
|
|
raise ValueError("Unknown input to MetricCollection.")
|
|
|
|
def forward(self, *args, **kwargs) -> Dict[str, Any]: # pylint: disable=E0202
|
|
"""
|
|
Iteratively call forward for each metric. Positional arguments (args) will
|
|
be passed to every metric in the collection, while keyword arguments (kwargs)
|
|
will be filtered based on the signature of the individual metric.
|
|
"""
|
|
return {k: m(*args, **m._filter_kwargs(**kwargs)) for k, m in self.items()}
|
|
|
|
def update(self, *args, **kwargs): # pylint: disable=E0202
|
|
"""
|
|
Iteratively call update for each metric. Positional arguments (args) will
|
|
be passed to every metric in the collection, while keyword arguments (kwargs)
|
|
will be filtered based on the signature of the individual metric.
|
|
"""
|
|
for _, m in self.items():
|
|
m_kwargs = m._filter_kwargs(**kwargs)
|
|
m.update(*args, **m_kwargs)
|
|
|
|
def compute(self) -> Dict[str, Any]:
|
|
return {k: m.compute() for k, m in self.items()}
|
|
|
|
def reset(self):
|
|
""" Iteratively call reset for each metric """
|
|
for _, m in self.items():
|
|
m.reset()
|
|
|
|
def clone(self):
|
|
""" Make a copy of the metric collection """
|
|
return deepcopy(self)
|
|
|
|
def persistent(self, mode: bool = True):
|
|
"""Method for post-init to change if metric states should be saved to
|
|
its state_dict
|
|
"""
|
|
for _, m in self.items():
|
|
m.persistent(mode)
|