lightning/pl_examples/domain_templates/reinforce_learn_Qnet.py

377 lines
12 KiB
Python

"""
Deep Reinforcement Learning: Deep Q-network (DQN)
This example is based on https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-
Second-Edition/blob/master/Chapter06/02_dqn_pong.py
The template illustrates using Lightning for Reinforcement Learning. The example builds a basic DQN using the
classic CartPole environment.
To run the template just run:
python reinforce_learn_Qnet.py
After ~1500 steps, you will see the total_reward hitting the max score of 200. Open up TensorBoard to
see the metrics:
tensorboard --logdir default
"""
import argparse
from collections import OrderedDict, deque, namedtuple
from typing import Tuple, List
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader
from torch.utils.data.dataset import IterableDataset
import pytorch_lightning as pl
class DQN(nn.Module):
"""
Simple MLP network
Args:
obs_size: observation/state size of the environment
n_actions: number of discrete actions available in the environment
hidden_size: size of hidden layers
"""
def __init__(self, obs_size: int, n_actions: int, hidden_size: int = 128):
super(DQN, self).__init__()
self.net = nn.Sequential(
nn.Linear(obs_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, n_actions)
)
def forward(self, x):
return self.net(x.float())
# Named tuple for storing experience steps gathered in training
Experience = namedtuple(
'Experience', field_names=['state', 'action', 'reward',
'done', 'new_state'])
class ReplayBuffer:
"""
Replay Buffer for storing past experiences allowing the agent to learn from them
Args:
capacity: size of the buffer
"""
def __init__(self, capacity: int) -> None:
self.buffer = deque(maxlen=capacity)
def __len__(self) -> int:
return len(self.buffer)
def append(self, experience: Experience) -> None:
"""
Add experience to the buffer
Args:
experience: tuple (state, action, reward, done, new_state)
"""
self.buffer.append(experience)
def sample(self, batch_size: int) -> Tuple:
indices = np.random.choice(len(self.buffer), batch_size, replace=False)
states, actions, rewards, dones, next_states = zip(*[self.buffer[idx] for idx in indices])
return (np.array(states), np.array(actions), np.array(rewards, dtype=np.float32),
np.array(dones, dtype=np.bool), np.array(next_states))
class RLDataset(IterableDataset):
"""
Iterable Dataset containing the ExperienceBuffer
which will be updated with new experiences during training
Args:
buffer: replay buffer
sample_size: number of experiences to sample at a time
"""
def __init__(self, buffer: ReplayBuffer, sample_size: int = 200) -> None:
self.buffer = buffer
self.sample_size = sample_size
def __iter__(self) -> Tuple:
states, actions, rewards, dones, new_states = self.buffer.sample(self.sample_size)
for i in range(len(dones)):
yield states[i], actions[i], rewards[i], dones[i], new_states[i]
class Agent:
"""
Base Agent class handling the interaction with the environment
Args:
env: training environment
replay_buffer: replay buffer storing experiences
"""
def __init__(self, env: gym.Env, replay_buffer: ReplayBuffer) -> None:
self.env = env
self.replay_buffer = replay_buffer
self.reset()
self.state = self.env.reset()
def reset(self) -> None:
"""Resets the environment and updates the state"""
self.state = self.env.reset()
def get_action(self, net: nn.Module, epsilon: float, device: str) -> int:
"""
Using the given network, decide what action to carry out
using an epsilon-greedy policy
Args:
net: DQN network
epsilon: value to determine likelihood of taking a random action
device: current device
Returns:
action
"""
if np.random.random() < epsilon:
action = self.env.action_space.sample()
else:
state = torch.tensor([self.state])
if device not in ['cpu']:
state = state.cuda(device)
q_values = net(state)
_, action = torch.max(q_values, dim=1)
action = int(action.item())
return action
@torch.no_grad()
def play_step(self, net: nn.Module, epsilon: float = 0.0, device: str = 'cpu') -> Tuple[float, bool]:
"""
Carries out a single interaction step between the agent and the environment
Args:
net: DQN network
epsilon: value to determine likelihood of taking a random action
device: current device
Returns:
reward, done
"""
action = self.get_action(net, epsilon, device)
# do step in the environment
new_state, reward, done, _ = self.env.step(action)
exp = Experience(self.state, action, reward, done, new_state)
self.replay_buffer.append(exp)
self.state = new_state
if done:
self.reset()
return reward, done
class DQNLightning(pl.LightningModule):
""" Basic DQN Model """
def __init__(self,
replay_size,
warm_start_steps: int,
gamma: float,
eps_start: int,
eps_end: int,
eps_last_frame: int,
sync_rate,
lr: float,
episode_length,
batch_size, **kwargs) -> None:
super().__init__()
self.replay_size = replay_size
self.warm_start_steps = warm_start_steps
self.gamma = gamma
self.eps_start = eps_start
self.eps_end = eps_end
self.eps_last_frame = eps_last_frame
self.sync_rate = sync_rate
self.lr = lr
self.episode_length = episode_length
self.batch_size = batch_size
self.env = gym.make(self.env)
obs_size = self.env.observation_space.shape[0]
n_actions = self.env.action_space.n
self.net = DQN(obs_size, n_actions)
self.target_net = DQN(obs_size, n_actions)
self.buffer = ReplayBuffer(self.replay_size)
self.agent = Agent(self.env, self.buffer)
self.total_reward = 0
self.episode_reward = 0
self.populate(self.warm_start_steps)
def populate(self, steps: int = 1000) -> None:
"""
Carries out several random steps through the environment to initially fill
up the replay buffer with experiences
Args:
steps: number of random steps to populate the buffer with
"""
for i in range(steps):
self.agent.play_step(self.net, epsilon=1.0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Passes in a state `x` through the network and gets the `q_values` of each action as an output
Args:
x: environment state
Returns:
q values
"""
output = self.net(x)
return output
def dqn_mse_loss(self, batch: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
"""
Calculates the mse loss using a mini batch from the replay buffer
Args:
batch: current mini batch of replay data
Returns:
loss
"""
states, actions, rewards, dones, next_states = batch
state_action_values = self.net(states).gather(1, actions.unsqueeze(-1)).squeeze(-1)
with torch.no_grad():
next_state_values = self.target_net(next_states).max(1)[0]
next_state_values[dones] = 0.0
next_state_values = next_state_values.detach()
expected_state_action_values = next_state_values * self.gamma + rewards
return nn.MSELoss()(state_action_values, expected_state_action_values)
def training_step(self, batch: Tuple[torch.Tensor, torch.Tensor], nb_batch) -> OrderedDict:
"""
Carries out a single step through the environment to update the replay buffer.
Then calculates loss based on the minibatch received
Args:
batch: current mini batch of replay data
nb_batch: batch number
Returns:
Training loss and log metrics
"""
device = self.get_device(batch)
epsilon = max(self.eps_end, self.eps_start -
self.global_step + 1 / self.eps_last_frame)
# step through environment with agent
reward, done = self.agent.play_step(self.net, epsilon, device)
self.episode_reward += reward
# calculates training loss
loss = self.dqn_mse_loss(batch)
if done:
self.total_reward = self.episode_reward
self.episode_reward = 0
# Soft update of target network
if self.global_step % self.sync_rate == 0:
self.target_net.load_state_dict(self.net.state_dict())
log = {'total_reward': torch.tensor(self.total_reward).to(device),
'reward': torch.tensor(reward).to(device),
'steps': torch.tensor(self.global_step).to(device)}
return OrderedDict({'loss': loss, 'log': log, 'progress_bar': log})
def configure_optimizers(self) -> List[Optimizer]:
"""Initialize Adam optimizer"""
optimizer = optim.Adam(self.net.parameters(), lr=self.lr)
return [optimizer]
def __dataloader(self) -> DataLoader:
"""Initialize the Replay Buffer dataset used for retrieving experiences"""
dataset = RLDataset(self.buffer, self.episode_length)
dataloader = DataLoader(
dataset=dataset,
batch_size=self.batch_size,
sampler=None,
)
return dataloader
def train_dataloader(self) -> DataLoader:
"""Get train loader"""
return self.__dataloader()
def get_device(self, batch) -> str:
"""Retrieve device currently being used by minibatch"""
return batch[0].device.index if self.on_gpu else 'cpu'
def main(args) -> None:
model = DQNLightning(**vars(args))
trainer = pl.Trainer(
gpus=1,
distributed_backend='dp',
early_stop_callback=False,
val_check_interval=100
)
trainer.fit(model)
if __name__ == '__main__':
torch.manual_seed(0)
np.random.seed(0)
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, default=16, help="size of the batches")
parser.add_argument("--lr", type=float, default=1e-2, help="learning rate")
parser.add_argument("--env", type=str, default="CartPole-v0", help="gym environment tag")
parser.add_argument("--gamma", type=float, default=0.99, help="discount factor")
parser.add_argument("--sync_rate", type=int, default=10,
help="how many frames do we update the target network")
parser.add_argument("--replay_size", type=int, default=1000,
help="capacity of the replay buffer")
parser.add_argument("--warm_start_size", type=int, default=1000,
help="how many samples do we use to fill our buffer at the start of training")
parser.add_argument("--eps_last_frame", type=int, default=1000,
help="what frame should epsilon stop decaying")
parser.add_argument("--eps_start", type=float, default=1.0, help="starting value of epsilon")
parser.add_argument("--eps_end", type=float, default=0.01, help="final value of epsilon")
parser.add_argument("--episode_length", type=int, default=200, help="max length of an episode")
parser.add_argument("--max_episode_reward", type=int, default=200,
help="max episode reward in the environment")
parser.add_argument("--warm_start_steps", type=int, default=1000,
help="max episode reward in the environment")
args = parser.parse_args()
main(args)