lightning/pl_examples/README.md

68 lines
1.6 KiB
Markdown

# Examples
This folder has 3 sections:
## Basic Examples
Use these examples to test how lightning works.
#### Test on CPU
```bash
python cpu_template.py
```
---
#### Train on a single GPU
```bash
python gpu_template.py --gpus 1
```
---
#### DataParallel (dp)
Train on multiple GPUs using DataParallel.
```bash
python gpu_template.py --gpus 2 --distributed_backend dp
```
---
#### DistributedDataParallel (ddp)
Train on multiple GPUs using DistributedDataParallel
```bash
python gpu_template.py --gpus 2 --distributed_backend ddp
```
---
#### DistributedDataParallel+DP (ddp2)
Train on multiple GPUs using DistributedDataParallel + dataparallel.
On a single node, uses all GPUs for 1 model. Then shares gradient information
across nodes.
```bash
python gpu_template.py --gpus 2 --distributed_backend ddp2
```
## Multi-node example
This demo launches a job using 2 GPUs on 2 different nodes (4 GPUs total).
To run this demo do the following:
1. Log into the jumphost node of your SLURM-managed cluster.
2. Create a conda environment with Lightning and a GPU PyTorch version.
3. Choose a script to submit
### DDP
Submit this job to run with DistributedDataParallel (2 nodes, 2 gpus each)
```bash
sbatch ddp_job_submit.sh YourEnv
```
### DDP2
Submit this job to run with a different implementation of DistributedDataParallel.
In this version, each node acts like DataParallel but syncs across nodes like DDP.
```bash
sbatch ddp2_job_submit.sh YourEnv
```
## Domain templates
These are templates to show common approaches such as GANs and RL.