284 lines
10 KiB
Python
284 lines
10 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Computer vision example on Transfer Learning. This computer vision example illustrates how one could fine-tune a
|
|
pre-trained network (by default, a ResNet50 is used) using pytorch-lightning. For the sake of this example, the 'cats
|
|
and dogs dataset' (~60MB, see `DATA_URL` below) and the proposed network (denoted by `TransferLearningModel`, see
|
|
below) is trained for 15 epochs.
|
|
|
|
The training consists of three stages.
|
|
|
|
From epoch 0 to 4, the feature extractor (the pre-trained network) is frozen except
|
|
maybe for the BatchNorm layers (depending on whether `train_bn = True`). The BatchNorm
|
|
layers (if `train_bn = True`) and the parameters of the classifier are trained as a
|
|
single parameters group with lr = 1e-2.
|
|
|
|
From epoch 5 to 9, the last two layer groups of the pre-trained network are unfrozen
|
|
and added to the optimizer as a new parameter group with lr = 1e-4 (while lr = 1e-3
|
|
for the first parameter group in the optimizer).
|
|
|
|
Eventually, from epoch 10, all the remaining layer groups of the pre-trained network
|
|
are unfrozen and added to the optimizer as a third parameter group. From epoch 10,
|
|
the parameters of the pre-trained network are trained with lr = 1e-5 while those of
|
|
the classifier is trained with lr = 1e-4.
|
|
|
|
Note:
|
|
See: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
|
|
|
|
To run:
|
|
python computer_vision_fine_tuning.py fit
|
|
|
|
"""
|
|
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import Union
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from lightning.pytorch import LightningDataModule, LightningModule, cli_lightning_logo
|
|
from lightning.pytorch.callbacks.finetuning import BaseFinetuning
|
|
from lightning.pytorch.cli import LightningCLI
|
|
from lightning.pytorch.utilities import rank_zero_info
|
|
from lightning.pytorch.utilities.model_helpers import get_torchvision_model
|
|
from torch import nn, optim
|
|
from torch.optim.lr_scheduler import MultiStepLR
|
|
from torch.optim.optimizer import Optimizer
|
|
from torch.utils.data import DataLoader
|
|
from torchmetrics import Accuracy
|
|
from torchvision import transforms
|
|
from torchvision.datasets import ImageFolder
|
|
from torchvision.datasets.utils import download_and_extract_archive
|
|
|
|
log = logging.getLogger(__name__)
|
|
DATA_URL = "https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip"
|
|
|
|
# --- Finetuning Callback ---
|
|
|
|
|
|
class MilestonesFinetuning(BaseFinetuning):
|
|
def __init__(self, milestones: tuple = (5, 10), train_bn: bool = False):
|
|
super().__init__()
|
|
self.milestones = milestones
|
|
self.train_bn = train_bn
|
|
|
|
def freeze_before_training(self, pl_module: LightningModule):
|
|
self.freeze(modules=pl_module.feature_extractor, train_bn=self.train_bn)
|
|
|
|
def finetune_function(self, pl_module: LightningModule, epoch: int, optimizer: Optimizer):
|
|
if epoch == self.milestones[0]:
|
|
# unfreeze 5 last layers
|
|
self.unfreeze_and_add_param_group(
|
|
modules=pl_module.feature_extractor[-5:], optimizer=optimizer, train_bn=self.train_bn
|
|
)
|
|
|
|
elif epoch == self.milestones[1]:
|
|
# unfreeze remaining layers
|
|
self.unfreeze_and_add_param_group(
|
|
modules=pl_module.feature_extractor[:-5], optimizer=optimizer, train_bn=self.train_bn
|
|
)
|
|
|
|
|
|
class CatDogImageDataModule(LightningDataModule):
|
|
def __init__(self, dl_path: Union[str, Path] = "data", num_workers: int = 0, batch_size: int = 8):
|
|
"""CatDogImageDataModule.
|
|
|
|
Args:
|
|
dl_path: root directory where to download the data
|
|
num_workers: number of CPU workers
|
|
batch_size: number of sample in a batch
|
|
|
|
"""
|
|
super().__init__()
|
|
|
|
self._dl_path = dl_path
|
|
self._num_workers = num_workers
|
|
self._batch_size = batch_size
|
|
|
|
def prepare_data(self):
|
|
"""Download images and prepare images datasets."""
|
|
download_and_extract_archive(url=DATA_URL, download_root=self._dl_path, remove_finished=True)
|
|
|
|
@property
|
|
def data_path(self):
|
|
return Path(self._dl_path).joinpath("cats_and_dogs_filtered")
|
|
|
|
@property
|
|
def normalize_transform(self):
|
|
return transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
|
|
@property
|
|
def train_transform(self):
|
|
return transforms.Compose([
|
|
transforms.Resize((224, 224)),
|
|
transforms.RandomHorizontalFlip(),
|
|
transforms.ToTensor(),
|
|
self.normalize_transform,
|
|
])
|
|
|
|
@property
|
|
def valid_transform(self):
|
|
return transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor(), self.normalize_transform])
|
|
|
|
def create_dataset(self, root, transform):
|
|
return ImageFolder(root=root, transform=transform)
|
|
|
|
def __dataloader(self, train: bool):
|
|
"""Train/validation loaders."""
|
|
if train:
|
|
dataset = self.create_dataset(self.data_path.joinpath("train"), self.train_transform)
|
|
else:
|
|
dataset = self.create_dataset(self.data_path.joinpath("validation"), self.valid_transform)
|
|
return DataLoader(dataset=dataset, batch_size=self._batch_size, num_workers=self._num_workers, shuffle=train)
|
|
|
|
def train_dataloader(self):
|
|
log.info("Training data loaded.")
|
|
return self.__dataloader(train=True)
|
|
|
|
def val_dataloader(self):
|
|
log.info("Validation data loaded.")
|
|
return self.__dataloader(train=False)
|
|
|
|
|
|
# --- PyTorch Lightning module ---
|
|
|
|
|
|
class TransferLearningModel(LightningModule):
|
|
def __init__(
|
|
self,
|
|
backbone: str = "resnet50",
|
|
train_bn: bool = False,
|
|
milestones: tuple = (2, 4),
|
|
batch_size: int = 32,
|
|
lr: float = 1e-3,
|
|
lr_scheduler_gamma: float = 1e-1,
|
|
num_workers: int = 6,
|
|
**kwargs,
|
|
) -> None:
|
|
"""TransferLearningModel.
|
|
|
|
Args:
|
|
backbone: Name (as in ``torchvision.models``) of the feature extractor
|
|
train_bn: Whether the BatchNorm layers should be trainable
|
|
milestones: List of two epochs milestones
|
|
lr: Initial learning rate
|
|
lr_scheduler_gamma: Factor by which the learning rate is reduced at each milestone
|
|
|
|
"""
|
|
super().__init__()
|
|
self.backbone = backbone
|
|
self.train_bn = train_bn
|
|
self.milestones = milestones
|
|
self.batch_size = batch_size
|
|
self.lr = lr
|
|
self.lr_scheduler_gamma = lr_scheduler_gamma
|
|
self.num_workers = num_workers
|
|
|
|
self.__build_model()
|
|
|
|
self.train_acc = Accuracy(task="binary")
|
|
self.valid_acc = Accuracy(task="binary")
|
|
self.save_hyperparameters()
|
|
|
|
def __build_model(self):
|
|
"""Define model layers & loss."""
|
|
# 1. Load pre-trained network:
|
|
backbone = get_torchvision_model(self.backbone, weights="DEFAULT")
|
|
|
|
_layers = list(backbone.children())[:-1]
|
|
self.feature_extractor = nn.Sequential(*_layers)
|
|
|
|
# 2. Classifier:
|
|
_fc_layers = [nn.Linear(2048, 256), nn.ReLU(), nn.Linear(256, 32), nn.Linear(32, 1)]
|
|
self.fc = nn.Sequential(*_fc_layers)
|
|
|
|
# 3. Loss:
|
|
self.loss_func = F.binary_cross_entropy_with_logits
|
|
|
|
def forward(self, x):
|
|
"""Forward pass.
|
|
|
|
Returns logits.
|
|
|
|
"""
|
|
# 1. Feature extraction:
|
|
x = self.feature_extractor(x)
|
|
x = x.squeeze(-1).squeeze(-1)
|
|
|
|
# 2. Classifier (returns logits):
|
|
return self.fc(x)
|
|
|
|
def loss(self, logits, labels):
|
|
return self.loss_func(input=logits, target=labels)
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
# 1. Forward pass:
|
|
x, y = batch
|
|
y_logits = self.forward(x)
|
|
y_scores = torch.sigmoid(y_logits)
|
|
y_true = y.view((-1, 1)).type_as(x)
|
|
|
|
# 2. Compute loss
|
|
train_loss = self.loss(y_logits, y_true)
|
|
|
|
# 3. Compute accuracy:
|
|
self.log("train_acc", self.train_acc(y_scores, y_true.int()), prog_bar=True)
|
|
|
|
return train_loss
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
# 1. Forward pass:
|
|
x, y = batch
|
|
y_logits = self.forward(x)
|
|
y_scores = torch.sigmoid(y_logits)
|
|
y_true = y.view((-1, 1)).type_as(x)
|
|
|
|
# 2. Compute loss
|
|
self.log("val_loss", self.loss(y_logits, y_true), prog_bar=True)
|
|
|
|
# 3. Compute accuracy:
|
|
self.log("val_acc", self.valid_acc(y_scores, y_true.int()), prog_bar=True)
|
|
|
|
def configure_optimizers(self):
|
|
parameters = list(self.parameters())
|
|
trainable_parameters = list(filter(lambda p: p.requires_grad, parameters))
|
|
rank_zero_info(
|
|
f"The model will start training with only {len(trainable_parameters)} "
|
|
f"trainable parameters out of {len(parameters)}."
|
|
)
|
|
optimizer = optim.Adam(trainable_parameters, lr=self.lr)
|
|
scheduler = MultiStepLR(optimizer, milestones=self.milestones, gamma=self.lr_scheduler_gamma)
|
|
return [optimizer], [scheduler]
|
|
|
|
|
|
class MyLightningCLI(LightningCLI):
|
|
def add_arguments_to_parser(self, parser):
|
|
parser.add_lightning_class_args(MilestonesFinetuning, "finetuning")
|
|
parser.link_arguments("data.batch_size", "model.batch_size")
|
|
parser.link_arguments("finetuning.milestones", "model.milestones")
|
|
parser.link_arguments("finetuning.train_bn", "model.train_bn")
|
|
parser.set_defaults({
|
|
"trainer.max_epochs": 15,
|
|
"trainer.enable_model_summary": False,
|
|
"trainer.num_sanity_val_steps": 0,
|
|
})
|
|
|
|
|
|
def cli_main():
|
|
MyLightningCLI(TransferLearningModel, CatDogImageDataModule, seed_everything_default=1234)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
cli_lightning_logo()
|
|
cli_main()
|