lightning/tests/loggers/test_all.py

268 lines
8.8 KiB
Python

import atexit
import inspect
import os
import pickle
import platform
from unittest import mock
import pytest
import tests.base.develop_utils as tutils
from pytorch_lightning import Trainer, Callback
from pytorch_lightning.loggers import (
TensorBoardLogger,
MLFlowLogger,
NeptuneLogger,
TestTubeLogger,
CometLogger,
WandbLogger,
)
from pytorch_lightning.loggers.base import DummyExperiment
from tests.base import EvalModelTemplate
from tests.loggers.test_comet import _patch_comet_atexit
def _get_logger_args(logger_class, save_dir):
logger_args = {}
if 'save_dir' in inspect.getfullargspec(logger_class).args:
logger_args.update(save_dir=str(save_dir))
if 'offline_mode' in inspect.getfullargspec(logger_class).args:
logger_args.update(offline_mode=True)
if 'offline' in inspect.getfullargspec(logger_class).args:
logger_args.update(offline=True)
return logger_args
@pytest.mark.parametrize("logger_class", [
TensorBoardLogger,
CometLogger,
MLFlowLogger,
NeptuneLogger,
TestTubeLogger,
WandbLogger,
])
@mock.patch('pytorch_lightning.loggers.neptune.neptune')
@mock.patch('pytorch_lightning.loggers.wandb.wandb')
def test_loggers_fit_test(wandb, neptune, tmpdir, monkeypatch, logger_class):
"""Verify that basic functionality of all loggers."""
os.environ['PL_DEV_DEBUG'] = '0'
_patch_comet_atexit(monkeypatch)
model = EvalModelTemplate()
class StoreHistoryLogger(logger_class):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.history = []
def log_metrics(self, metrics, step):
super().log_metrics(metrics, step)
self.history.append((step, metrics))
logger_args = _get_logger_args(logger_class, tmpdir)
logger = StoreHistoryLogger(**logger_args)
if logger_class == WandbLogger:
# required mocks for Trainer
logger.experiment.id = 'foo'
logger.experiment.project_name.return_value = 'bar'
trainer = Trainer(
max_epochs=1,
logger=logger,
limit_train_batches=0.2,
limit_val_batches=0.5,
fast_dev_run=True,
default_root_dir=tmpdir,
)
trainer.fit(model)
trainer.test()
log_metric_names = [(s, sorted(m.keys())) for s, m in logger.history]
if logger_class == TensorBoardLogger:
expected = [
(0, ['hp_metric']),
(0, ['epoch', 'train_some_val']),
(0, ['early_stop_on', 'epoch', 'val_acc']),
(0, ['hp_metric']),
(1, ['epoch', 'test_acc', 'test_loss'])
]
assert log_metric_names == expected
else:
expected = [
(0, ['epoch', 'train_some_val']),
(0, ['early_stop_on', 'epoch', 'val_acc']),
(1, ['epoch', 'test_acc', 'test_loss'])
]
assert log_metric_names == expected
@pytest.mark.parametrize("logger_class", [
TensorBoardLogger,
CometLogger,
MLFlowLogger,
TestTubeLogger,
WandbLogger,
])
@mock.patch('pytorch_lightning.loggers.wandb.wandb')
def test_loggers_save_dir_and_weights_save_path(wandb, tmpdir, monkeypatch, logger_class):
""" Test the combinations of save_dir, weights_save_path and default_root_dir. """
_patch_comet_atexit(monkeypatch)
class TestLogger(logger_class):
# for this test it does not matter what these attributes are
# so we standardize them to make testing easier
@property
def version(self):
return 'version'
@property
def name(self):
return 'name'
model = EvalModelTemplate()
trainer_args = dict(
default_root_dir=tmpdir,
max_steps=1,
)
# no weights_save_path given
save_dir = tmpdir / 'logs'
weights_save_path = None
logger = TestLogger(**_get_logger_args(TestLogger, save_dir))
trainer = Trainer(**trainer_args, logger=logger, weights_save_path=weights_save_path)
trainer.fit(model)
assert trainer.weights_save_path == trainer.default_root_dir
assert trainer.checkpoint_callback.dirpath == os.path.join(logger.save_dir, 'name', 'version', 'checkpoints')
assert trainer.default_root_dir == tmpdir
# with weights_save_path given, the logger path and checkpoint path should be different
save_dir = tmpdir / 'logs'
weights_save_path = tmpdir / 'weights'
logger = TestLogger(**_get_logger_args(TestLogger, save_dir))
trainer = Trainer(**trainer_args, logger=logger, weights_save_path=weights_save_path)
trainer.fit(model)
assert trainer.weights_save_path == weights_save_path
assert trainer.logger.save_dir == save_dir
assert trainer.checkpoint_callback.dirpath == weights_save_path / 'name' / 'version' / 'checkpoints'
assert trainer.default_root_dir == tmpdir
# no logger given
weights_save_path = tmpdir / 'weights'
trainer = Trainer(**trainer_args, logger=False, weights_save_path=weights_save_path)
trainer.fit(model)
assert trainer.weights_save_path == weights_save_path
assert trainer.checkpoint_callback.dirpath == weights_save_path / 'checkpoints'
assert trainer.default_root_dir == tmpdir
@pytest.mark.parametrize("logger_class", [
CometLogger,
MLFlowLogger,
NeptuneLogger,
TensorBoardLogger,
TestTubeLogger,
# The WandbLogger gets tested for pickling in its own test.
])
def test_loggers_pickle_all(tmpdir, monkeypatch, logger_class):
""" Test that the logger objects can be pickled. This test only makes sense if the packages are installed. """
_patch_comet_atexit(monkeypatch)
try:
_test_loggers_pickle(tmpdir, monkeypatch, logger_class)
except (ImportError, ModuleNotFoundError):
pytest.xfail(f"pickle test requires {logger_class.__class__} dependencies to be installed.")
def _test_loggers_pickle(tmpdir, monkeypatch, logger_class):
"""Verify that pickling trainer with logger works."""
_patch_comet_atexit(monkeypatch)
logger_args = _get_logger_args(logger_class, tmpdir)
logger = logger_class(**logger_args)
# this can cause pickle error if the experiment object is not picklable
# the logger needs to remove it from the state before pickle
_ = logger.experiment
# test pickling loggers
pickle.dumps(logger)
trainer = Trainer(
max_epochs=1,
logger=logger,
)
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({'acc': 1.0})
# make sure we restord properly
assert trainer2.logger.name == logger.name
assert trainer2.logger.save_dir == logger.save_dir
@pytest.mark.parametrize("extra_params", [
pytest.param(dict(max_epochs=1, auto_scale_batch_size=True), id='Batch-size-Finder'),
pytest.param(dict(max_epochs=3, auto_lr_find=True), id='LR-Finder'),
])
def test_logger_reset_correctly(tmpdir, extra_params):
""" Test that the tuners do not alter the logger reference """
tutils.reset_seed()
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
**extra_params,
)
logger1 = trainer.logger
trainer.tune(model)
logger2 = trainer.logger
logger3 = model.logger
assert logger1 == logger2, \
'Finder altered the logger of trainer'
assert logger2 == logger3, \
'Finder altered the logger of model'
class RankZeroLoggerCheck(Callback):
# this class has to be defined outside the test function, otherwise we get pickle error
# due to the way ddp process is launched
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
is_dummy = isinstance(trainer.logger.experiment, DummyExperiment)
if trainer.is_global_zero:
assert not is_dummy
else:
assert is_dummy
assert pl_module.logger.experiment.something(foo="bar") is None
@pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows")
@pytest.mark.parametrize("logger_class", [
TensorBoardLogger,
MLFlowLogger,
# NeptuneLogger, # TODO: fix: https://github.com/PyTorchLightning/pytorch-lightning/pull/3256
TestTubeLogger,
])
@mock.patch('pytorch_lightning.loggers.neptune.neptune')
def test_logger_created_on_rank_zero_only(neptune, tmpdir, monkeypatch, logger_class):
""" Test that loggers get replaced by dummy loggers on global rank > 0"""
_patch_comet_atexit(monkeypatch)
logger_args = _get_logger_args(logger_class, tmpdir)
logger = logger_class(**logger_args)
model = EvalModelTemplate()
trainer = Trainer(
logger=logger,
default_root_dir=tmpdir,
distributed_backend='ddp_cpu',
num_processes=2,
max_steps=1,
checkpoint_callback=True,
callbacks=[RankZeroLoggerCheck()],
)
result = trainer.fit(model)
assert result == 1