lightning/tests/checkpointing/test_checkpoint_callback_fr...

116 lines
3.6 KiB
Python

import os
from pytorch_lightning import Trainer, seed_everything, callbacks
from tests.base import EvalModelTemplate, BoringModel
from unittest import mock
import pytest
import torch
def test_mc_called_on_fastdevrun(tmpdir):
seed_everything(1234)
os.environ['PL_DEV_DEBUG'] = '1'
train_val_step_model = EvalModelTemplate()
# fast dev run = called once
# train loop only, dict, eval result
trainer = Trainer(fast_dev_run=True)
trainer.fit(train_val_step_model)
# checkpoint should have been called once with fast dev run
assert len(trainer.dev_debugger.checkpoint_callback_history) == 1
# -----------------------
# also called once with no val step
# -----------------------
train_step_only_model = EvalModelTemplate()
train_step_only_model.validation_step = None
# fast dev run = called once
# train loop only, dict, eval result
trainer = Trainer(fast_dev_run=True)
trainer.fit(train_step_only_model)
# make sure only training step was called
assert train_step_only_model.training_step_called
assert not train_step_only_model.validation_step_called
assert not train_step_only_model.test_step_called
# checkpoint should have been called once with fast dev run
assert len(trainer.dev_debugger.checkpoint_callback_history) == 1
def test_mc_called(tmpdir):
seed_everything(1234)
os.environ['PL_DEV_DEBUG'] = '1'
# -----------------
# TRAIN LOOP ONLY
# -----------------
train_step_only_model = EvalModelTemplate()
train_step_only_model.validation_step = None
# no callback
trainer = Trainer(max_epochs=3, checkpoint_callback=False)
trainer.fit(train_step_only_model)
assert len(trainer.dev_debugger.checkpoint_callback_history) == 0
# -----------------
# TRAIN + VAL LOOP ONLY
# -----------------
val_train_model = EvalModelTemplate()
# no callback
trainer = Trainer(max_epochs=3, checkpoint_callback=False)
trainer.fit(val_train_model)
assert len(trainer.dev_debugger.checkpoint_callback_history) == 0
@mock.patch('torch.save')
@pytest.mark.parametrize(['epochs', 'val_check_interval', 'expected'],
[(1, 1.0, 1), (2, 1.0, 2), (1, 0.25, 4), (2, 0.3, 7)])
def test_default_checkpoint_freq(save_mock, tmpdir, epochs, val_check_interval, expected):
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=epochs,
weights_summary=None,
val_check_interval=val_check_interval
)
trainer.fit(model)
# make sure types are correct
assert save_mock.call_count == expected
@mock.patch('torch.save')
@pytest.mark.parametrize(['k', 'epochs', 'val_check_interval', 'expected'],
[(1, 1, 1.0, 1), (2, 2, 1.0, 2), (2, 1, 0.25, 4), (2, 2, 0.3, 7)])
def test_top_k(save_mock, tmpdir, k, epochs, val_check_interval, expected):
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.last_coeff = 10.0
def training_step(self, batch, batch_idx):
loss = self.step(torch.ones(32))
loss = loss / (loss + 0.0000001)
loss += self.last_coeff
self.log('my_loss', loss)
self.last_coeff *= 0.999
return loss
model = TestModel()
trainer = Trainer(
checkpoint_callback=callbacks.ModelCheckpoint(monitor='my_loss', save_top_k=k),
default_root_dir=tmpdir,
max_epochs=epochs,
weights_summary=None,
val_check_interval=val_check_interval
)
trainer.fit(model)
# make sure types are correct
assert save_mock.call_count == expected