lightning/tests/backends/test_ddp_spawn.py

73 lines
2.2 KiB
Python

import pytest
import torch
import tests.base.develop_pipelines as tpipes
import tests.base.develop_utils as tutils
from pytorch_lightning.callbacks import EarlyStopping
from tests.base import EvalModelTemplate
from pytorch_lightning.core import memory
from pytorch_lightning.trainer import Trainer
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_early_stop_ddp_spawn(tmpdir):
"""Make sure DDP works. with early stopping"""
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
callbacks=[EarlyStopping()],
max_epochs=50,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='ddp_spawn',
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_model_ddp_spawn(tmpdir):
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='ddp_spawn',
progress_bar_refresh_rate=0
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model)
# test memory helper functions
memory.get_memory_profile('min_max')
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
"""Make sure DDP works with dataloaders passed to fit()"""
tutils.set_random_master_port()
model = EvalModelTemplate()
fit_options = dict(train_dataloader=model.train_dataloader(),
val_dataloaders=model.val_dataloader())
trainer = Trainer(
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.2,
limit_val_batches=0.2,
gpus=[0, 1],
distributed_backend='ddp_spawn'
)
result = trainer.fit(model, **fit_options)
assert result == 1, "DDP doesn't work with dataloaders passed to fit()."