lightning/pl_examples
Adrian Wälchli 7dc58bd286
Refactor model summary + generalize example input array (#1773)
* squash

variant a


variant b


add test


revert rename


add changelog


docs


move changelog entry to top


use hooks


wip


wipp


layer summary


clean up, refactor


type hints


rename


remove obsolete code


rename


unused imports


simplify formatting of table and increase readability


doctest


superclass object


update examples


print unknown sizes


more docs and doctest


testing


unknown layers


add rnn test


remove main


restore train mode


test device wip


device


constant


simplify model forward transfer


return summary object in method


extend tests


fix summary for empty module


extend tests


refactor and added hook


variant a


variant b


add test


revert rename


add changelog


docs


move changelog entry to top


remove hardcoded string


simplify


test unknown shapes and all others


comments for tests


fix hparams attribute

* update default

* unused import

* clean up

* replace hardcoded strings

* fix doctest

* fix top/full

* black

* fix rnn test

* fix rnn

* update debugging docs


update docs


typo


update docs


update docs

* add changelog

* extract constant

* setter and getter

* move parity models to test folder

* parameterize mode
2020-06-15 17:05:58 -04:00
..
basic_examples Replaces ddp .spawn with subprocess (#2029) 2020-06-01 11:00:32 -04:00
domain_templates Refactor model summary + generalize example input array (#1773) 2020-06-15 17:05:58 -04:00
models Refactor model summary + generalize example input array (#1773) 2020-06-15 17:05:58 -04:00
README.md simplify examples structure (#1247) 2020-04-03 17:57:34 -04:00
__init__.py simplify examples structure (#1247) 2020-04-03 17:57:34 -04:00

README.md

Examples

This folder has 3 sections:

Basic Examples

Use these examples to test how lightning works.

Test on CPU

python cpu_template.py

Train on a single GPU

python gpu_template.py --gpus 1

DataParallel (dp)

Train on multiple GPUs using DataParallel.

python gpu_template.py --gpus 2 --distributed_backend dp

DistributedDataParallel (ddp)

Train on multiple GPUs using DistributedDataParallel

python gpu_template.py --gpus 2 --distributed_backend ddp

DistributedDataParallel+DP (ddp2)

Train on multiple GPUs using DistributedDataParallel + dataparallel. On a single node, uses all GPUs for 1 model. Then shares gradient information across nodes.

python gpu_template.py --gpus 2 --distributed_backend ddp2

Multi-node example

This demo launches a job using 2 GPUs on 2 different nodes (4 GPUs total). To run this demo do the following:

  1. Log into the jumphost node of your SLURM-managed cluster.
  2. Create a conda environment with Lightning and a GPU PyTorch version.
  3. Choose a script to submit

DDP

Submit this job to run with DistributedDataParallel (2 nodes, 2 gpus each)

sbatch ddp_job_submit.sh YourEnv

DDP2

Submit this job to run with a different implementation of DistributedDataParallel. In this version, each node acts like DataParallel but syncs across nodes like DDP.

sbatch ddp2_job_submit.sh YourEnv

Domain templates

These are templates to show common approaches such as GANs and RL.