75 lines
1.9 KiB
Python
75 lines
1.9 KiB
Python
import os
|
|
import sys
|
|
|
|
from test_tube import HyperOptArgumentParser, Experiment
|
|
from pytorch_lightning.models.trainer import Trainer
|
|
from pytorch_lightning.utils.arg_parse import add_default_args
|
|
from pytorch_lightning.callbacks.pt_callbacks import EarlyStopping, ModelCheckpoint
|
|
from docs.source.examples.example_model import ExampleModel
|
|
|
|
|
|
def main(hparams):
|
|
"""
|
|
Main training routine specific for this project
|
|
:param hparams:
|
|
:return:
|
|
"""
|
|
# init experiment
|
|
exp = Experiment(
|
|
name=hparams.tt_name,
|
|
debug=hparams.debug,
|
|
save_dir=hparams.tt_save_path,
|
|
version=hparams.hpc_exp_number,
|
|
autosave=False,
|
|
description=hparams.tt_description
|
|
)
|
|
|
|
exp.argparse(hparams)
|
|
exp.save()
|
|
|
|
# build model
|
|
model = ExampleModel(hparams)
|
|
|
|
# callbacks
|
|
early_stop = EarlyStopping(
|
|
monitor='val_acc',
|
|
patience=3,
|
|
mode='min',
|
|
verbose=True,
|
|
)
|
|
|
|
model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version)
|
|
checkpoint = ModelCheckpoint(
|
|
filepath=model_save_path,
|
|
save_function=None,
|
|
save_best_only=True,
|
|
verbose=True,
|
|
monitor='val_acc',
|
|
mode='min'
|
|
)
|
|
|
|
# configure trainer
|
|
trainer = Trainer(
|
|
experiment=exp,
|
|
checkpoint_callback=checkpoint,
|
|
early_stop_callback=early_stop,
|
|
)
|
|
|
|
# train model
|
|
trainer.fit(model)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# use default args given by lightning
|
|
root_dir = os.path.split(os.path.dirname(sys.modules['__main__'].__file__))[0]
|
|
parent_parser = HyperOptArgumentParser(strategy='random_search', add_help=False)
|
|
add_default_args(parent_parser, root_dir)
|
|
|
|
# allow model to overwrite or extend args
|
|
parser = ExampleModel.add_model_specific_args(parent_parser)
|
|
hyperparams = parser.parse_args()
|
|
|
|
# train model
|
|
main(hyperparams)
|