12cb9942a1
* convert xla tensor to cpu before save * move_to_cpu * updated CHANGELOG.md * added on_save to accelerators * if accelerator is not None * refactors * change filename to run test * run test_tpu_backend * added xla_device_utils to tests * added xla_device_utils to test * removed tests * Revert "added xla_device_utils to test" This reverts commit 0c9316bb * fixed pep * increase timeout and print traceback * lazy check tpu exists * increased timeout removed barrier for tpu during test reduced epochs * fixed torch_xla imports * fix tests * define xla utils * fix test * aval * chlog * docs * aval * Apply suggestions from code review Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> |
||
---|---|---|
.. | ||
base-conda | ||
base-cuda | ||
base-xla | ||
release | ||
tpu-tests | ||
README.md |
README.md
Docker images
Builds images form attached Dockerfiles
You can build it on your own, note it takes lots of time, be prepared.
git clone <git-repository>
docker image build -t pytorch-lightning:latest -f dockers/conda/Dockerfile .
or with specific arguments
git clone <git-repository>
docker image build \
-t pytorch-lightning:py3.8-pt1.6 \
-f dockers/base-cuda/Dockerfile \
--build-arg PYTHON_VERSION=3.8 \
--build-arg PYTORCH_VERSION=1.6 \
.
To run your docker use
docker image list
docker run --rm -it pytorch-lightning:latest bash
and if you do not need it anymore, just clean it:
docker image list
docker image rm pytorch-lightning:latest
Run docker image with GPUs
To run docker image with access to you GPUs you need to install
# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
and later run the docker image with --gpus all
so for example
docker run --rm -it --gpus all pytorchlightning/pytorch_lightning:base-cuda-py3.7-torch1.6